Loading [MathJax]/extensions/MathZoom.js
Matrix polynomials play an important role in the theory of matrix differential equations. We develop a fixed point method to compute solutions of matrix polynomials equations, where the matricial elements of the matrix polynomial are considered separately as complex polynomials. Numerical examples illustrate the method presented.
We give a new proof of multisummability of formal power series solutions of a non linear meromorphic differential equation. We use the recent Malgrange-Ramis definition of multisummability. The first proof of the main result is due to B. Braaksma. Our method of proof is very different: Braaksma used Écalle definition of multisummability and Laplace transform. Starting from a preliminary normal form of the differential equationthe idea of our proof is to interpret a formal power series solution...
The asymptotic behaviour of a Sturm-Liouville differential equation with coefficient is investigated, where and is a nondecreasing step function tending to as . Let denote the set of those ’s for which the corresponding differential equation has a solution not tending to 0. It is proved that is an additive group. Four examples are given with , , (i.e. the set of dyadic numbers), and .
We give a proof of the fact that any holomorphic Pfaffian form in two variables has a convergent integral curve. The proof gives an effective method to construct the solution, and we extend it to get a Gevrey type solution for a Gevrey form.
Currently displaying 1 –
20 of
180