Infinite soluble groups with no outer automorphisms

Derek J. S. Robinson

Rendiconti del Seminario Matematico della Università di Padova (1980)

  • Volume: 62, page 281-294
  • ISSN: 0041-8994

How to cite

top

Robinson, Derek J. S.. "Infinite soluble groups with no outer automorphisms." Rendiconti del Seminario Matematico della Università di Padova 62 (1980): 281-294. <http://eudml.org/doc/107753>.

@article{Robinson1980,
author = {Robinson, Derek J. S.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {outer automorphism group; complete groups; infinite soluble groups of finite total rank; nilpotent group; metanilpotent complete groups; Carter subgroups; infinite supersoluble groups; polycyclic groups},
language = {eng},
pages = {281-294},
publisher = {Seminario Matematico of the University of Padua},
title = {Infinite soluble groups with no outer automorphisms},
url = {http://eudml.org/doc/107753},
volume = {62},
year = {1980},
}

TY - JOUR
AU - Robinson, Derek J. S.
TI - Infinite soluble groups with no outer automorphisms
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1980
PB - Seminario Matematico of the University of Padua
VL - 62
SP - 281
EP - 294
LA - eng
KW - outer automorphism group; complete groups; infinite soluble groups of finite total rank; nilpotent group; metanilpotent complete groups; Carter subgroups; infinite supersoluble groups; polycyclic groups
UR - http://eudml.org/doc/107753
ER -

References

top
  1. [1] R.S. Dark, A complete group of odd order, Math. Proc. Cambridge Philos. Soc., 77 (1975), pp. 21-28. Zbl0303.20018MR352277
  2. [2] B. Delaunay, Über die Darstellung der Zahlen durch die binären kubischen Formen von negativer Diskriminante, Math. Z., 31 (1930), pp. 1-26. Zbl55.0722.02MR1545095JFM55.0722.02
  3. [3] T.M. Gagen, Some finite solvable groups with no outer automorphisms, J. Algebra to appear. Zbl0436.20014MR578796
  4. [4] T.M. Gagen - D. J. S. ROBINSON, Finite metabelian groups with no outer autorrzorphisms, Arch. Math. (Basel), 32 (1979), pp. 417-423 Zbl0401.20011MR547361
  5. [5] W. Gaschütz, Kohomologische Trivialitäten und äußereAutomorphismen von p-Gruppen, Math. Z., 88 (1965), pp. 432-433. Zbl0199.06302MR195941
  6. [6] K.W. Gruenberg, The upper central series in soluble groups, Ill. J. Math., 5 (1961), pp. 436-466. Zbl0244.20028MR136657
  7. [7] K.W. Gruenberg, Cohomological methods in group theory, Lecture Notes in Mathematics, Vol. 143, Springer, Berlin, 1970. Zbl0205.32701MR279200
  8. [8] B. Hartley - D.J.S. Robinson, On finite complete groups, to appear. Zbl0415.20013MR578020
  9. [9] O. Hölder, Bildung zusammengesetzter Gruppen, Math. Ann., 46 (1895), pp. 321-422. MR1510888JFM26.0160.01
  10. [10] M.V. Horo, On complete groups of odd order, Algebra i Logika, 13 (1974), pp. 63-76; Algebra and Logic, 13 (1974), pp. 34-40. Zbl0299.20016MR382440
  11. [11] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967. Zbl0217.07201MR224703
  12. [12] G.A. Miller, The transformations of a regular group into its conjoint, Bull. Amer. Math. Soc., 32 (1926), pp. 631-634. Zbl52.0115.01JFM52.0115.01
  13. [13] D.J.S. Robinson, Finiteness conditions and generalized soluble groups, Springer, Berlin, 1972. Zbl0243.20032
  14. [14] D.J.S. Robinson, The vanishing of certain homology and cohomology groups, J. Pure Appl. Algebra, 7 (1976), pp. 145-167. Zbl0329.20032MR404478
  15. [15] P. Schmid, Normal p-subgroups in the group of outer autmorphisms of a finite p-group, Math. Z., 147 (1976), pp. 271-277. Zbl0307.20016MR419602
  16. [16] U. Stammbach, Homology in group theory, Lecture Notes in Mathematics, Vol. 359, Springer, Berlin, 1973. Zbl0272.20049MR382477
  17. [17] C. Wells, Automorphisms of group extensions, Trans. Amer. Math. Soc., 155 (1971), pp. 189-193. Zbl0221.20054MR272898

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.