Examples of highly transitive permutation groups

Otto H. Kegel

Rendiconti del Seminario Matematico della Università di Padova (1980)

  • Volume: 63, page 295-300
  • ISSN: 0041-8994

How to cite

top

Kegel, Otto H.. "Examples of highly transitive permutation groups." Rendiconti del Seminario Matematico della Università di Padova 63 (1980): 295-300. <http://eudml.org/doc/107775>.

@article{Kegel1980,
author = {Kegel, Otto H.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {finitely generated subactions; locally finite permutation group; highly transitive permutation group; skeleton; countable homogeneous permutation group; universal locally finite group},
language = {eng},
pages = {295-300},
publisher = {Seminario Matematico of the University of Padua},
title = {Examples of highly transitive permutation groups},
url = {http://eudml.org/doc/107775},
volume = {63},
year = {1980},
}

TY - JOUR
AU - Kegel, Otto H.
TI - Examples of highly transitive permutation groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1980
PB - Seminario Matematico of the University of Padua
VL - 63
SP - 295
EP - 300
LA - eng
KW - finitely generated subactions; locally finite permutation group; highly transitive permutation group; skeleton; countable homogeneous permutation group; universal locally finite group
UR - http://eudml.org/doc/107775
ER -

References

top
  1. [1] P. Hall, Some constructions for locally finite groups, J. London Math. Soc., 34 (1959), pp. 305-319. Zbl0088.02301MR162845
  2. [2] J. Hirschfeld and W.H. Wheeler, Forcing, Arithmetic, and Division Rings, Lecture Notes in Mathematics, vol. 454, 1975Springer, Berlin. Zbl0304.02024MR389581
  3. [3] O.H. Kegel and B.A.F. Wehrfritz, Locally finite groups, North-Holland, 1973Amsterdam. Zbl0259.20001MR470081
  4. [4] A. Mac Intyre and S. Shelah, Universal locally finite groups, J. Algebra, 43 (1976), pp. 168-175. Zbl0363.20032MR439625
  5. [5] T.P. M, A permutation representation of a free group, Quart. J. Math. Oxford (2), 28 (1977), pp. 353-356. Zbl0358.20041MR453869
  6. [6] D.S. Passman, The algebraic structure of group rings, John Wiley & Sons, New York1977. Zbl0368.16003MR470211
  7. [7] S. Shelah and M. Ziegler: Algebraically closed groups of large cardinality, TheJ. Symbolic Logic, 44 (1979), pp. 522-532. Zbl0427.03025MR550381

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.