A characterization of discrete linearly compact rings by means of a duality

A. Orsatti; V. Roselli

Rendiconti del Seminario Matematico della Università di Padova (1981)

  • Volume: 64, page 219-234
  • ISSN: 0041-8994

How to cite

top

Orsatti, A., and Roselli, V.. "A characterization of discrete linearly compact rings by means of a duality." Rendiconti del Seminario Matematico della Università di Padova 64 (1981): 219-234. <http://eudml.org/doc/107796>.

@article{Orsatti1981,
author = {Orsatti, A., Roselli, V.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {right Morita duality; faithfully balanced bimodule; injective cogenerators; right linearly compact ring},
language = {eng},
pages = {219-234},
publisher = {Seminario Matematico of the University of Padua},
title = {A characterization of discrete linearly compact rings by means of a duality},
url = {http://eudml.org/doc/107796},
volume = {64},
year = {1981},
}

TY - JOUR
AU - Orsatti, A.
AU - Roselli, V.
TI - A characterization of discrete linearly compact rings by means of a duality
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1981
PB - Seminario Matematico of the University of Padua
VL - 64
SP - 219
EP - 234
LA - eng
KW - right Morita duality; faithfully balanced bimodule; injective cogenerators; right linearly compact ring
UR - http://eudml.org/doc/107796
ER -

References

top
  1. [1] F.W. Anderson - K.R. Fuller, Rings and categories of modules, Springer-Verlag, New York, 1974. Zbl0765.16001MR417223
  2. [2] S. Bazzoni, Pontryagin Type Dualities over Commutative Rings, Annali di Mat. Pura e Appl., (IV), 121 (1979), pp. 373-385. Zbl0438.13008MR554786
  3. [3] C. Menini - A. Orsatti, Good dualities and strongly quasi-injective modules, to appear in Annali di Mat. Pura ed Applicata. Zbl0476.16029MR633400
  4. [4] B.J. Müller, Linear compactness and Morita duality, J. Alg., 16 (1970), pp. 60-66. Zbl0206.04803MR263875
  5. [5] F.L. Sandomierski, Linear compact modules and local Morita duality, in Ring Theory, ed. R. Gordon, New York, Academic Press, 1972. Zbl0234.16013MR344288
  6. [6] P. Vamos, Classical rings, J. Alg., 34 (1975), pp. 114-129. Zbl0331.13006MR382250
  7. [7] P. Vamos, Rings with duality, Proc. London Math. Soc., (3), 35 (1977), pp. 275-289. Zbl0372.16016MR450324
  8. [8] D. Zelinsky, Linearly compact modules and rings, Amer. J. Math., 75 (1953), pp. 79-90. Zbl0050.10802MR51832

NotesEmbed ?

top

You must be logged in to post comments.