A characterization of discrete linearly compact rings by means of a duality
Page 1 Next
A. Orsatti, V. Roselli (1981)
Rendiconti del Seminario Matematico della Università di Padova
Klaus Bongartz (1984)
Mathematische Annalen
Simion Breaz (2005)
Czechoslovak Mathematical Journal
We consider the quotient categories of two categories of modules relative to the Serre classes of modules which are bounded as abelian groups and we prove a Morita type theorem for some equivalences between these quotient categories.
István Beck (1982)
Mathematica Scandinavica
Alberto Facchini (1985)
Acta Universitatis Carolinae. Mathematica et Physica
Ibrahim Assem, Andrzej Skowronski (1988)
Mathematische Annalen
Christine Riedtmann (1984/1985)
Séminaire Bourbaki
René Guitart, Luc Van den Bril (1983)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Kasangian, Stefano, Lack, Stephen, Vitale, Enrico M. (2004)
Theory and Applications of Categories [electronic only]
Svein A. Sikko, Sverre O. Smalo (1995)
Mathematica Scandinavica
Robert Wisbauer (1985)
Acta Universitatis Carolinae. Mathematica et Physica
Gerhard Michler, Rudolf Wille (1970)
Mathematische Zeitschrift
P. N. Anh (1986)
Rendiconti del Seminario Matematico della Università di Padova
Amnon Neeman (2011)
Annales scientifiques de l'École Normale Supérieure
Let be a ring. In two previous articles [12, 14] we studied the homotopy category of projective -modules. We produced a set of generators for this category, proved that the category is -compactly generated for any ring , and showed that it need not always be compactly generated, but is for sufficiently nice . We furthermore analyzed the inclusion and the orthogonal subcategory . And we even showed that the inclusion has a right adjoint; this forces some natural map to be an equivalence...
Henning Krause (1998)
Colloquium Mathematicae
Andrzej Skowronski, Piotr Dowbor (1987)
Commentarii mathematici Helvetici
K.-H. Ulbrich (1987)
Manuscripta mathematica
Jichun Liu, Longgang Sun (2014)
Czechoslovak Mathematical Journal
A pretriangulated category is an additive category with left and right triangulations such that these two triangulations are compatible. In this paper, we first show that the idempotent completion of a left triangulated category admits a unique structure of left triangulated category and dually this is true for a right triangulated category. We then prove that the idempotent completion of a pretriangulated category has a natural structure of pretriangulated category. As an application, we show that...
Yves André (2003/2004)
Séminaire Bourbaki
On sait que les groupes de Chow d’une variété projective ne sont pas de type fini, et ne peuvent même être paramétrés par une variété algébrique, en général. Pourtant, S.-I. Kimura et P. O’Sullivan ont conjecturé (indépendamment l’un de l’autre) que les motifs de Chow, définis en termes de correspondances algébriques modulo l’équivalence rationnelle, sont de “dimension finie”au sens où, tout comme les super-fibrés vectoriels, ils sont somme d’un facteur dont une puissance extérieure est nulle et...
Raymundo Bautista (1985)
Commentarii mathematici Helvetici
Page 1 Next