Sugli zeri delle soluzioni di una classe di equazioni differenziali lineari del secondo ordine

Anna Maria Bresquar

Rendiconti del Seminario Matematico della Università di Padova (1981)

  • Volume: 64, page 247-270
  • ISSN: 0041-8994

How to cite

top

Bresquar, Anna Maria. "Sugli zeri delle soluzioni di una classe di equazioni differenziali lineari del secondo ordine." Rendiconti del Seminario Matematico della Università di Padova 64 (1981): 247-270. <http://eudml.org/doc/107799>.

@article{Bresquar1981,
author = {Bresquar, Anna Maria},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {comparison theorems; upper bounds; conjugate points; asymptotic formulae; lower bounds},
language = {ita},
pages = {247-270},
publisher = {Seminario Matematico of the University of Padua},
title = {Sugli zeri delle soluzioni di una classe di equazioni differenziali lineari del secondo ordine},
url = {http://eudml.org/doc/107799},
volume = {64},
year = {1981},
}

TY - JOUR
AU - Bresquar, Anna Maria
TI - Sugli zeri delle soluzioni di una classe di equazioni differenziali lineari del secondo ordine
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1981
PB - Seminario Matematico of the University of Padua
VL - 64
SP - 247
EP - 270
LA - ita
KW - comparison theorems; upper bounds; conjugate points; asymptotic formulae; lower bounds
UR - http://eudml.org/doc/107799
ER -

References

top
  1. [1] J.H. Barret, da Lectures on ordinary differential equations, Edited by R. McKelvey, Academic Press (1970). Zbl0213.10102MR259206
  2. [2] G. Butler - J.W. Macki, Oscillation and comparison theorems for second order linear differential equations with integrable coefficients, Can. J. Math., 26 (2) (1974), pp. 294-301. Zbl0279.34023MR344590
  3. [3] W.A. Coppel, Disconjugacy, Lecture Notes in Math., Vol. 220, Springer (1971). Zbl0224.34003MR460785
  4. [4] C. De La Vallée Poussin, Sur l'équation différentielle linéaire du second ordre. Détermination d'un intégrale par deux valeurs assignées. Extension aux équations d'ordre n, J. Math. Pures Appl., 8 (1929), pp. 125-144. Zbl55.0850.02JFM55.0850.02
  5. [5] PH. Hartman, Ordinary differential equations, J. Wiley and Sons, New York (1964). Zbl0125.32102MR171038
  6. [6] K. Kreith, Oscillation theory, Lecture Notes in Math., Vol. 324, Springer (1973). Zbl0258.35001
  7. [7] W. Leighton, On approximating conjugate, focal, σ-points for linear differential equations of second order, Ann. Mat. Pura Appl., 107 (4) (1975), pp. 373-381. Zbl0342.65035
  8. [8] W. Leighton, Some comparison theorems for conjugate and σ-points, Can. J. Math., 28 (6) (1976), pp. 1172-1179. Zbl0339.34035
  9. [9] A. Ju.LEVIN, On the stability of solutions of equations of second order, Soviet Math. Dokl., 2 (1961), pp. 1642-1646. Zbl0109.31002
  10. [10] A. Ju.LEVIN, Linear differential equations of second order, Soviet Math. Dokl., 4 (1963), pp. 1814-1817. Zbl0128.30901
  11. [11] A. Ju. Levin, Behavior of the solutions of the equation x+p(t)x+q(t)x=0 in the nonoscillatory case, Math. USSR Sbornik, 4 (1968), n. 1, pp. 33-55. Zbl0174.13403
  12. [12] R.T. Lewis, The existence of conjugate points for selfadjoint differential equations of even order, Proc. Amer. Math. Soc., 56 (1976), pp. 162-166. Zbl0294.34004MR399576
  13. [13] F. Neuman, Relation between the distribution of the zeros of the solutions of a second order linear differential equation and the boundedness of these solutions, Acta Math. Acad. Sci. Hung., 19 (1968), pp. 1-6. Zbl0162.12304MR228750
  14. [14] W.T. Patula, On the distance between zeroes, Proc. Amer. Math. Soc., 52 (1975), pp. 247-251. Zbl0305.34050MR379986
  15. [15] W.T. Reid, Ordinary differential equations, J. WILEY and Sons, New York (1971). Zbl0212.10901MR273082
  16. [16] U. Richard, Teoremi di confronto e di oscillazione per equazioni differenziali lineari del secondo ordine, in corso di stampa, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 
  17. [17] D. Willett, da Lectures on ordinary differential equations, Edited by R. McKelvey, Academic Press (1970). Zbl0213.10102MR259206
  18. [18] D. Willett, Oscillation on finite or infinite intervats of second order linear differential equations, Can. Math. Bull., 14 (4) (1971), pp. 539-550. Zbl0241.34039MR311994

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.