Sugli zeri delle soluzioni di una classe di equazioni differenziali lineari del secondo ordine
Rendiconti del Seminario Matematico della Università di Padova (1981)
- Volume: 64, page 247-270
- ISSN: 0041-8994
Access Full Article
topHow to cite
topBresquar, Anna Maria. "Sugli zeri delle soluzioni di una classe di equazioni differenziali lineari del secondo ordine." Rendiconti del Seminario Matematico della Università di Padova 64 (1981): 247-270. <http://eudml.org/doc/107799>.
@article{Bresquar1981,
author = {Bresquar, Anna Maria},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {comparison theorems; upper bounds; conjugate points; asymptotic formulae; lower bounds},
language = {ita},
pages = {247-270},
publisher = {Seminario Matematico of the University of Padua},
title = {Sugli zeri delle soluzioni di una classe di equazioni differenziali lineari del secondo ordine},
url = {http://eudml.org/doc/107799},
volume = {64},
year = {1981},
}
TY - JOUR
AU - Bresquar, Anna Maria
TI - Sugli zeri delle soluzioni di una classe di equazioni differenziali lineari del secondo ordine
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1981
PB - Seminario Matematico of the University of Padua
VL - 64
SP - 247
EP - 270
LA - ita
KW - comparison theorems; upper bounds; conjugate points; asymptotic formulae; lower bounds
UR - http://eudml.org/doc/107799
ER -
References
top- [1] J.H. Barret, da Lectures on ordinary differential equations, Edited by R. McKelvey, Academic Press (1970). Zbl0213.10102MR259206
- [2] G. Butler - J.W. Macki, Oscillation and comparison theorems for second order linear differential equations with integrable coefficients, Can. J. Math., 26 (2) (1974), pp. 294-301. Zbl0279.34023MR344590
- [3] W.A. Coppel, Disconjugacy, Lecture Notes in Math., Vol. 220, Springer (1971). Zbl0224.34003MR460785
- [4] C. De La Vallée Poussin, Sur l'équation différentielle linéaire du second ordre. Détermination d'un intégrale par deux valeurs assignées. Extension aux équations d'ordre n, J. Math. Pures Appl., 8 (1929), pp. 125-144. Zbl55.0850.02JFM55.0850.02
- [5] PH. Hartman, Ordinary differential equations, J. Wiley and Sons, New York (1964). Zbl0125.32102MR171038
- [6] K. Kreith, Oscillation theory, Lecture Notes in Math., Vol. 324, Springer (1973). Zbl0258.35001
- [7] W. Leighton, On approximating conjugate, focal, σ-points for linear differential equations of second order, Ann. Mat. Pura Appl., 107 (4) (1975), pp. 373-381. Zbl0342.65035
- [8] W. Leighton, Some comparison theorems for conjugate and σ-points, Can. J. Math., 28 (6) (1976), pp. 1172-1179. Zbl0339.34035
- [9] A. Ju.LEVIN, On the stability of solutions of equations of second order, Soviet Math. Dokl., 2 (1961), pp. 1642-1646. Zbl0109.31002
- [10] A. Ju.LEVIN, Linear differential equations of second order, Soviet Math. Dokl., 4 (1963), pp. 1814-1817. Zbl0128.30901
- [11] A. Ju. Levin, Behavior of the solutions of the equation x+p(t)x+q(t)x=0 in the nonoscillatory case, Math. USSR Sbornik, 4 (1968), n. 1, pp. 33-55. Zbl0174.13403
- [12] R.T. Lewis, The existence of conjugate points for selfadjoint differential equations of even order, Proc. Amer. Math. Soc., 56 (1976), pp. 162-166. Zbl0294.34004MR399576
- [13] F. Neuman, Relation between the distribution of the zeros of the solutions of a second order linear differential equation and the boundedness of these solutions, Acta Math. Acad. Sci. Hung., 19 (1968), pp. 1-6. Zbl0162.12304MR228750
- [14] W.T. Patula, On the distance between zeroes, Proc. Amer. Math. Soc., 52 (1975), pp. 247-251. Zbl0305.34050MR379986
- [15] W.T. Reid, Ordinary differential equations, J. WILEY and Sons, New York (1971). Zbl0212.10901MR273082
- [16] U. Richard, Teoremi di confronto e di oscillazione per equazioni differenziali lineari del secondo ordine, in corso di stampa, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur.
- [17] D. Willett, da Lectures on ordinary differential equations, Edited by R. McKelvey, Academic Press (1970). Zbl0213.10102MR259206
- [18] D. Willett, Oscillation on finite or infinite intervats of second order linear differential equations, Can. Math. Bull., 14 (4) (1971), pp. 539-550. Zbl0241.34039MR311994
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.