Algebraic and relational semantics for tense logics

Paola Unterholzner

Rendiconti del Seminario Matematico della Università di Padova (1981)

  • Volume: 65, page 119-128
  • ISSN: 0041-8994

How to cite

top

Unterholzner, Paola. "Algebraic and relational semantics for tense logics." Rendiconti del Seminario Matematico della Università di Padova 65 (1981): 119-128. <http://eudml.org/doc/107808>.

@article{Unterholzner1981,
author = {Unterholzner, Paola},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {tense algebras; category of tense algebras and homomorphisms; category of tense frames and bicontractions; duality theorem; completeness of first order semantics; transitive nets},
language = {eng},
pages = {119-128},
publisher = {Seminario Matematico of the University of Padua},
title = {Algebraic and relational semantics for tense logics},
url = {http://eudml.org/doc/107808},
volume = {65},
year = {1981},
}

TY - JOUR
AU - Unterholzner, Paola
TI - Algebraic and relational semantics for tense logics
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1981
PB - Seminario Matematico of the University of Padua
VL - 65
SP - 119
EP - 128
LA - eng
KW - tense algebras; category of tense algebras and homomorphisms; category of tense frames and bicontractions; duality theorem; completeness of first order semantics; transitive nets
UR - http://eudml.org/doc/107808
ER -

References

top
  1. [1] R. Balbes - P. Dwinger, Distributive lattices, University of Missouri Press, 1974. Zbl0321.06012MR373985
  2. [2] G. Booles, The unprovability of consistency. An essay in modal logic, Cambridge University Press, 1979. Zbl0409.03009MR525201
  3. [3] G. Gratzer, Universal Algebra, Van Nostrand, 1968. Zbl0182.34201MR248066
  4. [4] B. Jensson - A. Tarski, Boolean algebras with operators, Amer. J. Math., 73 (1951), ppM891-939. Zbl0045.31505
  5. [5] W. Rautenberg, 3 Klassische und Nichtklassische Aussagenlogik, Vieweg, 1979. Zbl0424.03007MR554370
  6. [6] H. Sahlquist, Completeness and correspondence in the first and second order semantics for modal logic, Proceedings of the Third Scandinavian Logic Symposium, ed. S. Kanger, North Holland, 1975, pp. 110-143. Zbl0319.02018MR387008
  7. [7] G. Sambin, Topology and categorical duality in the study of semantics for modal logics, submitted to J. Philos. Logic. 
  8. [8] G. Sambin - S. Valentini, A modal sequent caclculus for a fragment of arithmetic, Stud. Logica, to appear. Zbl0457.03016MR595115
  9. [9] C. Smorynski, The derivability condition and Loeb's Theorem, a shourt course in modal logic, manuscript, Heidelberg, 1976. 
  10. [10] S.K. Thomason, Semantic analysis of tense logic, J. Symbolic Logic, 37 (1972), pp. 155-158. Zbl0238.02027MR316218

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.