On weighted estimated for some systems of partial differential operators

Mauro Nacinovich

Rendiconti del Seminario Matematico della Università di Padova (1983)

  • Volume: 69, page 221-232
  • ISSN: 0041-8994

How to cite

top

Nacinovich, Mauro. "On weighted estimated for some systems of partial differential operators." Rendiconti del Seminario Matematico della Università di Padova 69 (1983): 221-232. <http://eudml.org/doc/107895>.

@article{Nacinovich1983,
author = {Nacinovich, Mauro},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {weighted estimates; weighted Sobolev spaces; subelliptic estimates; differential complexes; Carleman method; constant coefficients},
language = {eng},
pages = {221-232},
publisher = {Seminario Matematico of the University of Padua},
title = {On weighted estimated for some systems of partial differential operators},
url = {http://eudml.org/doc/107895},
volume = {69},
year = {1983},
}

TY - JOUR
AU - Nacinovich, Mauro
TI - On weighted estimated for some systems of partial differential operators
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1983
PB - Seminario Matematico of the University of Padua
VL - 69
SP - 221
EP - 232
LA - eng
KW - weighted estimates; weighted Sobolev spaces; subelliptic estimates; differential complexes; Carleman method; constant coefficients
UR - http://eudml.org/doc/107895
ER -

References

top
  1. [1] A. Andreotti - M. NACINOVICH, Complexes of partial differential operators, Ann. Scuola Norm. Sup. Pisa, (4), 3 (1976), pp. 553-621. Zbl0334.58015MR445557
  2. [2] A. Andreotti - M. Nacinovich, Noncharacteristic hypersurfaces for complexes of differential operators, Annali di Mat. Pura e Appl., (IV), 125 (1980), pp. 13-83. Zbl0456.58024MR605203
  3. [3] A. Andreotti - E. VESENTINI, Sopra un teorema di Kodaira, Ann. Scuola Norm. Sup. Pisa, (3) 15 (1961), pp. 283-309. Zbl0108.16604MR141140
  4. [4] A. Andreotti - E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, I.H.E.S., Publ. Math., no. 25 (1965). Zbl0138.06604MR175148
  5. [5] T. Carleman, Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astr. Fys., 26B, no. 17 (1939), pp. 1-9. Zbl0022.34201
  6. [6] P.R. Garabedian - D. C. SPENCER, Complex boundary value problems. Trans. Amer. Math. Soc., 73 (1952), pp. 223-242. Zbl0049.18101MR51326
  7. [7] L. Hörmander, L2 estimates and existence theorems for the ∂ operator, Acta Math., 113 (1965), pp. 89-152. Zbl0158.11002
  8. [8] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Princeton, 1966. Zbl0138.06203MR203075
  9. [9] L. Hörmander, Pseudodifferential operators and nonelliptic boundary value problems, Comm. Pure Appl. Math., 18 (1965), pp. 443-492. 
  10. [11] C.B. Morreyjr., The analytic embeddability of abstract real analytic manifolds, Ann. of Math., 68 (1958), pp. 159-201. Zbl0090.38401
  11. [11] C.B. Morrey jr.: Multiple integrals in the calculus of variations, New York, 1966. Zbl0142.38701MR202511
  12. [13] M. Nacinovich, Complex analysis and complexes of differential operators, Summer Seminar on ComplexAnalysis, Trieste, 1980, to appear in Springer Lecture Notes. Zbl0513.32029MR672785
  13. [14] P. Schapira, Conditions de poisitivité dans une variété simplectique complèxe. Application à l'étude des microfonctions, Ann. Scient. Ec. Norm. Sup., 4e série, 14 (1981), pp. 121-139. Zbl0473.58022MR618733

NotesEmbed ?

top

You must be logged in to post comments.