-modules, contact valued calculus and Poincaré-Cartan form
Dans cet article on étudie les -modules dont le support singulier est un croisement normal dans , par l’intermédiaire de la catégorie équivalente de faisceaux pervers. On montre qu’ils sont caractérisés, à isomorphisme près, par la donnée suivante : un hypercube constitué par des espaces vectoriels de dimension finie indexés par les parties de , et des applications linéaires soumises à certaines conditions de commutativité et d’inversibilité. Ce résultat est exprimé sous forme d’une équivalence...
The theory of variational bicomplexes is a natural geometrical setting for the calculus of variations on a fibred manifold. It is a well–established theory although not spread out very much among theoretical and mathematical physicists. Here, we present a new approach to infinite order variational bicomplexes based upon the finite order approach due to Krupka. In this approach the information related to the order of jets is lost, but we have a considerable simplification both in the exposition...
Soit un opérateur pseudodifférentiel (ou microdifférentiel) tel que soit aussi un opérateur pseudodifférentiel. Alors le symbole de s’ecrit avec un symbole . Pour la réciproque, si est un opérateur à symbole , il existe un opérateur tel que . Tous ces résultats reposent sur la théorie développée dans la Note I de cette série. Comme application, on obtient une condition suffisante d’inversibilité pour les opérateurs pseudodifférentiels d’ordre infini.
Cet article s’intéresse au calcul symbolique des opérateurs microdifférentiels avec symboles exponentiels. On donne la loi de composition des symboles exponentiels. Comme application, on trouve une condition suffisante d’ellipticité pour les opérateurs microdifférentiels d’ordre infini.