Unterringtheorie-exemplifiziert an Ringen mit Involution

Walter Streb

Rendiconti del Seminario Matematico della Università di Padova (1983)

  • Volume: 70, page 109-132
  • ISSN: 0041-8994

How to cite

top

Streb, Walter. "Unterringtheorie-exemplifiziert an Ringen mit Involution." Rendiconti del Seminario Matematico della Università di Padova 70 (1983): 109-132. <http://eudml.org/doc/107912>.

@article{Streb1983,
author = {Streb, Walter},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {rings with involution; skew symmetric elements; subrings},
language = {ger},
pages = {109-132},
publisher = {Seminario Matematico of the University of Padua},
title = {Unterringtheorie-exemplifiziert an Ringen mit Involution},
url = {http://eudml.org/doc/107912},
volume = {70},
year = {1983},
}

TY - JOUR
AU - Streb, Walter
TI - Unterringtheorie-exemplifiziert an Ringen mit Involution
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1983
PB - Seminario Matematico of the University of Padua
VL - 70
SP - 109
EP - 132
LA - ger
KW - rings with involution; skew symmetric elements; subrings
UR - http://eudml.org/doc/107912
ER -

References

top
  1. [1] I.N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, Illinois, 1972. Zbl0232.16001MR271135
  2. [2] I.N. Herstein, Noncommutative Rings, Carus Monograph 15 (Math. Assoc. Amer.), Wiley, New York, 1973. Zbl0177.05801MR1449137
  3. [3] I.N. Herstein, Rings with Involution, Univ. of Chicago Press, Chicago, Illinois, 1976. Zbl0343.16011MR442017
  4. [4] C. Lanski, On the relationship of a ring and the subring generated by its symmetric elements, Pacific J. Math., 44 (1973), pp. 581-592. Zbl0225.16009MR321966
  5. [5] C. Lanski, Chain conditions in rings with involution, J. London Math. Soc., 9 (1974), pp. 93-102. Zbl0291.16011MR360676
  6. [6] C. Lanski, Chain conditions in rings with involution II, J. London Math. Soc., 18 (1978), pp. 421-428. Zbl0395.16008MR518226
  7. [7] P.H. Lee, On subrings of rings with involution, Pacific J. Math., 60 (1975), pp. 131-147. Zbl0324.16013MR396657
  8. [8] L.H. Rowen, Polynomial Identities in Ring Theory, Academic Press, New York, 1980. Zbl0461.16001MR576061
  9. [9] W. Streb, Lie structure in semiprime rings with involution, J. Algebra, 70 (1981), pp. 480-492. Zbl0463.16013MR623821
  10. [10] W. Streb, Invariant subgroups in rings with involution, J. Algebra, 72 (1981), pp. 342-358. Zbl0469.16007MR641330
  11. [11] W. Streb, Invariante Untergruppen in Ringen mit Involution II, J. Algebra, im Druck. Zbl0566.16004MR736765

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.