Unterringtheorie-exemplifiziert an Ringen mit Involution

Walter Streb

Rendiconti del Seminario Matematico della Università di Padova (1983)

  • Volume: 70, page 109-132
  • ISSN: 0041-8994

How to cite

top

Streb, Walter. "Unterringtheorie-exemplifiziert an Ringen mit Involution." Rendiconti del Seminario Matematico della Università di Padova 70 (1983): 109-132. <http://eudml.org/doc/107912>.

@article{Streb1983,
author = {Streb, Walter},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {rings with involution; skew symmetric elements; subrings},
language = {ger},
pages = {109-132},
publisher = {Seminario Matematico of the University of Padua},
title = {Unterringtheorie-exemplifiziert an Ringen mit Involution},
url = {http://eudml.org/doc/107912},
volume = {70},
year = {1983},
}

TY - JOUR
AU - Streb, Walter
TI - Unterringtheorie-exemplifiziert an Ringen mit Involution
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1983
PB - Seminario Matematico of the University of Padua
VL - 70
SP - 109
EP - 132
LA - ger
KW - rings with involution; skew symmetric elements; subrings
UR - http://eudml.org/doc/107912
ER -

References

top
  1. [1] I.N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, Illinois, 1972. Zbl0232.16001MR271135
  2. [2] I.N. Herstein, Noncommutative Rings, Carus Monograph 15 (Math. Assoc. Amer.), Wiley, New York, 1973. Zbl0177.05801MR1449137
  3. [3] I.N. Herstein, Rings with Involution, Univ. of Chicago Press, Chicago, Illinois, 1976. Zbl0343.16011MR442017
  4. [4] C. Lanski, On the relationship of a ring and the subring generated by its symmetric elements, Pacific J. Math., 44 (1973), pp. 581-592. Zbl0225.16009MR321966
  5. [5] C. Lanski, Chain conditions in rings with involution, J. London Math. Soc., 9 (1974), pp. 93-102. Zbl0291.16011MR360676
  6. [6] C. Lanski, Chain conditions in rings with involution II, J. London Math. Soc., 18 (1978), pp. 421-428. Zbl0395.16008MR518226
  7. [7] P.H. Lee, On subrings of rings with involution, Pacific J. Math., 60 (1975), pp. 131-147. Zbl0324.16013MR396657
  8. [8] L.H. Rowen, Polynomial Identities in Ring Theory, Academic Press, New York, 1980. Zbl0461.16001MR576061
  9. [9] W. Streb, Lie structure in semiprime rings with involution, J. Algebra, 70 (1981), pp. 480-492. Zbl0463.16013MR623821
  10. [10] W. Streb, Invariant subgroups in rings with involution, J. Algebra, 72 (1981), pp. 342-358. Zbl0469.16007MR641330
  11. [11] W. Streb, Invariante Untergruppen in Ringen mit Involution II, J. Algebra, im Druck. Zbl0566.16004MR736765

NotesEmbed ?

top

You must be logged in to post comments.