Bifurcation and total stability

M. L. Bertotti; V. Moauro

Rendiconti del Seminario Matematico della Università di Padova (1984)

  • Volume: 71, page 131-139
  • ISSN: 0041-8994

How to cite

top

Bertotti, M. L., and Moauro, V.. "Bifurcation and total stability." Rendiconti del Seminario Matematico della Università di Padova 71 (1984): 131-139. <http://eudml.org/doc/107928>.

@article{Bertotti1984,
author = {Bertotti, M. L., Moauro, V.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {bifurcation; asymptotic stability; total stability; examples; Hopf bifurcation},
language = {eng},
pages = {131-139},
publisher = {Seminario Matematico of the University of Padua},
title = {Bifurcation and total stability},
url = {http://eudml.org/doc/107928},
volume = {71},
year = {1984},
}

TY - JOUR
AU - Bertotti, M. L.
AU - Moauro, V.
TI - Bifurcation and total stability
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1984
PB - Seminario Matematico of the University of Padua
VL - 71
SP - 131
EP - 139
LA - eng
KW - bifurcation; asymptotic stability; total stability; examples; Hopf bifurcation
UR - http://eudml.org/doc/107928
ER -

References

top
  1. [1] F. Marchetti - P. Negrini - L. Salvadori - M. Scalia, Liapunov direct method in approaching bifurcation problems, Annali Mat. pur. appl., (IV) cviii (1976), pp. 211-225. Zbl0332.34047MR445076
  2. [2] L. Salvadori, Generalized Hopf bifurcation and related stabitity problems, Proc. Conter. « Qualitative Theory of Diff. Eqs. » Szeged, Hungary (1979), Colloquia Math. Soc. Janof Poljai, 30. Zbl0489.34054
  3. [3] J.L. Massera, Contributions to stabitity theory, Ann. Math., 64 (1956), pp. 182-206. Correction, Ann. Math., 68 (1958), p. 202. Zbl0070.31003MR79179
  4. [4] J. Auslander - P. Seibert, Prolongations and generalized Liapunov functions, Ann. Inst. Fourier, Grenoble, 14 (1964), pp. 237-268. Zbl0128.31303MR176180
  5. [5] P. Seibert, Establidad bajo perturbaciones sostenidas y su generalizacion en flujos continuous, Acta Mexic. Science Tecnol.,11 (3) (1968), pp. 154-165. Zbl0215.15104MR251329
  6. [6] P. Negrini - L. Salvadori, Attractivity and Hopf bifurcation, Nonlinear Analysis, T.M.A., 3 (1979), pp. 87-99. Zbl0423.34062MR520476
  7. [7] J.E. Marsden - M. McCracken, The Hopf bifurcation and its application, Appl. Math. Sci., Springer-Verlag, 19 (1976). Zbl0346.58007MR494309
  8. [8] A.A. Andronov - E.A. Leontovich - I.I. Gordon - A.G. Maier, Theory of Bifurcations of Dynamical Systems on a Plane, Halsted Press, New York, 1973. MR344606
  9. [9] V. Moauro, Bifurcation of closed orbits from a limit cycle in R2, Rend. Sem. Mat. Padova, 65 (1981). Zbl0486.34025MR653301

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.