Page 1 Next

Displaying 1 – 20 of 240

Showing per page

A characterization of isochronous centres in terms of symmetries.

Emilio Freire, Gasull, Armengol, Guillamon, Antoni 2 (2004)

Revista Matemática Iberoamericana

We present a description of isochronous centres of planar vector fields X by means of their groups of symmetries. More precisely, given a normalizer U of X (i.e., [X,U]= µ X, where µ is a scalar function), we provide a necessary and sufficient isochronicity condition based on µ. This criterion extends the result of Sabatini and Villarini that establishes the equivalence between isochronicity and the existence of commutators ([X,U]= 0). We put also special emphasis on the mechanical aspects of isochronicity;...

A class of integrable polynomial vector fields

Javier Chavarriga (1995)

Applicationes Mathematicae

We study the integrability of two-dimensional autonomous systems in the plane of the form = - y + X s ( x , y ) , = x + Y s ( x , y ) , where Xs(x,y) and Ys(x,y) are homogeneous polynomials of degree s with s≥2. First, we give a method for finding polynomial particular solutions and next we characterize a class of integrable systems which have a null divergence factor given by a quadratic polynomial in the variable ( x 2 + y 2 ) s / 2 - 1 with coefficients being functions of tan−1(y/x).

A note on a generalization of Diliberto's Theorem for certain differential equations of higher dimension

Ladislav Adamec (2005)

Applications of Mathematics

In the theory of autonomous perturbations of periodic solutions of ordinary differential equations the method of the Poincaré mapping has been widely used. For the analysis of properties of this mapping in the case of two-dimensional systems, a result first obtained probably by Diliberto in 1950 is sometimes used. In the paper, this result is (partially) extended to a certain class of autonomous ordinary differential equations of higher dimension.

A proof of the stratified Morse inequalities for singular complex algebraic curves using the Witten deformation

Ursula Ludwig (2011)

Annales de l’institut Fourier

The Witten deformation is an analytic method proposed by Witten which, given a Morse function f : M R on a smooth compact manifold M , allows to prove the Morse inequalities. The aim of this article is to generalise the Witten deformation to stratified Morse functions (in the sense of stratified Morse theory as developed by Goresky and MacPherson) on a singular complex algebraic curve. In a previous article the author developed the Witten deformation for the model of an algebraic curve with cone-like singularities...

A sufficient condition for a polynomial centre to be global

Marco Sabatini (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A sufficient condition is given in order that a centre of a polynomial planar autonomous system be a global centre.

Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields

Lubomir Gavrilov (1999)

Annales de l'institut Fourier

Let 𝒜 be the real vector space of Abelian integrals I ( h ) = { H h } R ( x , y ) d x d y , h [ 0 , h ˜ ] where H ( x , y ) = ( x 2 + y 2 ) / 2 + ... is a fixed real polynomial, R ( x , y ) is an arbitrary real polynomial and { H h } , h [ 0 , h ˜ ] , is the interior of the oval of H which surrounds the origin and tends to it as h 0 . We prove that if H ( x , y ) is a semiweighted homogeneous polynomial with only Morse critical points, then 𝒜 is a free finitely generated module over the ring of real polynomials [ h ] , and compute its rank. We find the generators of 𝒜 in the case when H is an arbitrary cubic polynomial. Finally we...

Affine invariant conditions for the topological distinction of quadratic systems with a critical point of the 4th multiplicity.

Mark Voldman, Iu. T. Calin, Nicolae I. Vulpe (1996)

Publicacions Matemàtiques

The affine invariant partition of the set of quadratic systems with one finite singular point of the 4th multiplicity with respect to different topological classes is accomplished. The conditions corresponding to this partition are semi-algebraic, i.e. they are expressed as equalities or inequalities between polynomials.

Analysis of the predator-prey model with climax prey population

Jitka Kühnová (2009)

Acta Mathematica Universitatis Ostraviensis

The aim of the contribution is to study ODE predator-prey system with a prey population embodying the Allee effect. Particular stationary points are analyzed and the results are illustrated by graphs of numerical solutions for various values of model parameters.

Approximation of limit cycle of differential systems with variable coefficients

Masakazu Onitsuka (2023)

Archivum Mathematicum

The behavior of the approximate solutions of two-dimensional nonlinear differential systems with variable coefficients is considered. Using a property of the approximate solution, so called conditional Ulam stability of a generalized logistic equation, the behavior of the approximate solution of the system is investigated. The obtained result explicitly presents the error between the limit cycle and its approximation. Some examples are presented with numerical simulations.

Currently displaying 1 – 20 of 240

Page 1 Next