Existence theorems for compressible viscous fluids having zero shear viscosity
Rendiconti del Seminario Matematico della Università di Padova (1984)
- Volume: 71, page 73-102
- ISSN: 0041-8994
Access Full Article
topHow to cite
topSecchi, Paolo. "Existence theorems for compressible viscous fluids having zero shear viscosity." Rendiconti del Seminario Matematico della Università di Padova 71 (1984): 73-102. <http://eudml.org/doc/107944>.
@article{Secchi1984,
author = {Secchi, Paolo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {zero shear viscosity; dilatational viscosity strictly positive; existence; initial-boundary value problems; positive or zero thermal conductivity},
language = {eng},
pages = {73-102},
publisher = {Seminario Matematico of the University of Padua},
title = {Existence theorems for compressible viscous fluids having zero shear viscosity},
url = {http://eudml.org/doc/107944},
volume = {71},
year = {1984},
}
TY - JOUR
AU - Secchi, Paolo
TI - Existence theorems for compressible viscous fluids having zero shear viscosity
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1984
PB - Seminario Matematico of the University of Padua
VL - 71
SP - 73
EP - 102
LA - eng
KW - zero shear viscosity; dilatational viscosity strictly positive; existence; initial-boundary value problems; positive or zero thermal conductivity
UR - http://eudml.org/doc/107944
ER -
References
top- [1] S. Agmon - A. Douglis - L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions Il, Comm. Pure Appl. Math., 17 (1964), pp. 35-92. Zbl0123.28706MR162050
- [2] H. Beirão Da Veiga, On the barotropic motion of compressible perfect fluids, Ann. Sc. Norm. Sup. Pisa, 8 (1981), pp. 317-351. Zbl0477.76059MR623940
- [3] H. Beirão Da Veiga - A. Valli, On the Euler equations for nonhomogeneous fluids (I), preprint Univ. Trento. Zbl0459.76003
- [4] J.P. Bourguignon - H. Brezis, Remarks on the Euler equations, J. Funct. Anal., 15 (1974), pp. 341-363. Zbl0279.58005MR344713
- [5] S. Chapman - T.G. Cowling, The mathematical theory of non-uniform gases, third ed., Cambridge, 1970. Zbl0049.26102
- [6] C. Foias - R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation, Ann. Sc. Norm. Sup. Pisa, 5 (1978), pp. 29-63. Zbl0384.35047MR481645
- [7] N. Itaya, On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids, Kodai Math. Sem. Rep., 23 (1971), 60-120. Zbl0219.76080MR283426
- [8] T. Kato, Linear and quasi-linear equations of evolution of hyperbolic type, Corso CIME on « Hyperbolicity » (1976), pp. 127-191. Zbl0456.35052
- [9] O.A. Ladyzenskaja - V.A. Solonnikov - N.N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Amer. Math. Soc., Transl. Math. Mono., 23 (1968) (translated from Russian). Zbl0174.15403MR241821
- [10] J.L. Lions - E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968. Zbl0165.10801MR247243
- [11] J.L. Lions E. Magenes, Problèmes aux limites non homogènes et applications, vol. 2, Dunod, Paris, 1968. Zbl0165.10801MR247244
- [12] A. Matsumura - T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), pp. 67-104. Zbl0429.76040MR564670
- [13] J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Boll. Soc. Math. France, 90 (1962), pp. 487-497. Zbl0113.19405MR149094
- [14] L. Rosenhead (and others), A discussion on the first and the second viscosities of fluids, Proc. Roy. Soc. Lond., Ser. A, 226 (1954), pp. 1-69. MR64546
- [15] J. Serrin, Mathematical principles of classical fluid mechanics, Handbuch der Physik, vol. VIII/1, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959. MR108116
- [16] J. Serrin, On the uniqueness of compressible fluid motions, Arch. Rat. Mech. Anal., 3 (1959), pp. 271-288. Zbl0089.19103MR106646
- [17] V.A. Solonnikov, Solvability of the initial-boundary value problem for the equations of motion of a viscous compressible fluid, J. Soviet Math., 14 (1980), pp. 1120-1133 (previously in Zap-Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 56 (1976), pp. 128-142 [Russian]). Zbl0451.35092MR481666
- [18] V.A. Solonnikov - A.V. Kazhikhov, Existence theorems for the equations of motion of a compressible viscous fluid, Ann. Rev. Fluid Mech., 13 (1981), pp. 79-95. Zbl0492.76074
- [19] A. Tani, On the first initial-boundary value problem of compressible viscous fluid motion, Publ. RIMS, Kyoto Univ., 13 (1977), pp. 193-253. Zbl0366.35070
- [20] A. Valli, An existence theorem for compressible viscous fluids, Ann. Mat. Pura App., 130 (1982), pp. 197-213. Zbl0599.76081MR663971
- [21] A. Valli, A correction to the paper «An existence theorem for compressible viscous fluids », Ann. Mat. Pura Appl., 132 (1982), pp. 399-400. Zbl0599.76082MR696052
- [22] A. Valli, Uniqueness theorems for compressible viscous fluids, especially when the Stokes relation holds, Boll. Un. Mat. It., Anal. Funz. Appl., 18-C (1981), pp. 317-325. Zbl0484.76075MR631585
- [23] A.I. Yol'pert - S.I. Hudjaev, On the Cauchy problem for composite systems of nonlinear differential equations, Math. USSR Sbornik, 16 (1972), pp. 517-544 (previously in Mat. Sbornik, 87 (1972), pp. 504-528 [Russian]). Zbl0251.35064MR390528
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.