Existence theorems for compressible viscous fluids having zero shear viscosity

Paolo Secchi

Rendiconti del Seminario Matematico della Università di Padova (1984)

  • Volume: 71, page 73-102
  • ISSN: 0041-8994

How to cite

top

Secchi, Paolo. "Existence theorems for compressible viscous fluids having zero shear viscosity." Rendiconti del Seminario Matematico della Università di Padova 71 (1984): 73-102. <http://eudml.org/doc/107944>.

@article{Secchi1984,
author = {Secchi, Paolo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {zero shear viscosity; dilatational viscosity strictly positive; existence; initial-boundary value problems; positive or zero thermal conductivity},
language = {eng},
pages = {73-102},
publisher = {Seminario Matematico of the University of Padua},
title = {Existence theorems for compressible viscous fluids having zero shear viscosity},
url = {http://eudml.org/doc/107944},
volume = {71},
year = {1984},
}

TY - JOUR
AU - Secchi, Paolo
TI - Existence theorems for compressible viscous fluids having zero shear viscosity
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1984
PB - Seminario Matematico of the University of Padua
VL - 71
SP - 73
EP - 102
LA - eng
KW - zero shear viscosity; dilatational viscosity strictly positive; existence; initial-boundary value problems; positive or zero thermal conductivity
UR - http://eudml.org/doc/107944
ER -

References

top
  1. [1] S. Agmon - A. Douglis - L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions Il, Comm. Pure Appl. Math., 17 (1964), pp. 35-92. Zbl0123.28706MR162050
  2. [2] H. Beirão Da Veiga, On the barotropic motion of compressible perfect fluids, Ann. Sc. Norm. Sup. Pisa, 8 (1981), pp. 317-351. Zbl0477.76059MR623940
  3. [3] H. Beirão Da Veiga - A. Valli, On the Euler equations for nonhomogeneous fluids (I), preprint Univ. Trento. Zbl0459.76003
  4. [4] J.P. Bourguignon - H. Brezis, Remarks on the Euler equations, J. Funct. Anal., 15 (1974), pp. 341-363. Zbl0279.58005MR344713
  5. [5] S. Chapman - T.G. Cowling, The mathematical theory of non-uniform gases, third ed., Cambridge, 1970. Zbl0049.26102
  6. [6] C. Foias - R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation, Ann. Sc. Norm. Sup. Pisa, 5 (1978), pp. 29-63. Zbl0384.35047MR481645
  7. [7] N. Itaya, On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids, Kodai Math. Sem. Rep., 23 (1971), 60-120. Zbl0219.76080MR283426
  8. [8] T. Kato, Linear and quasi-linear equations of evolution of hyperbolic type, Corso CIME on « Hyperbolicity » (1976), pp. 127-191. Zbl0456.35052
  9. [9] O.A. Ladyzenskaja - V.A. Solonnikov - N.N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Amer. Math. Soc., Transl. Math. Mono., 23 (1968) (translated from Russian). Zbl0174.15403MR241821
  10. [10] J.L. Lions - E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968. Zbl0165.10801MR247243
  11. [11] J.L. Lions E. Magenes, Problèmes aux limites non homogènes et applications, vol. 2, Dunod, Paris, 1968. Zbl0165.10801MR247244
  12. [12] A. Matsumura - T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), pp. 67-104. Zbl0429.76040MR564670
  13. [13] J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Boll. Soc. Math. France, 90 (1962), pp. 487-497. Zbl0113.19405MR149094
  14. [14] L. Rosenhead (and others), A discussion on the first and the second viscosities of fluids, Proc. Roy. Soc. Lond., Ser. A, 226 (1954), pp. 1-69. MR64546
  15. [15] J. Serrin, Mathematical principles of classical fluid mechanics, Handbuch der Physik, vol. VIII/1, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959. MR108116
  16. [16] J. Serrin, On the uniqueness of compressible fluid motions, Arch. Rat. Mech. Anal., 3 (1959), pp. 271-288. Zbl0089.19103MR106646
  17. [17] V.A. Solonnikov, Solvability of the initial-boundary value problem for the equations of motion of a viscous compressible fluid, J. Soviet Math., 14 (1980), pp. 1120-1133 (previously in Zap-Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 56 (1976), pp. 128-142 [Russian]). Zbl0451.35092MR481666
  18. [18] V.A. Solonnikov - A.V. Kazhikhov, Existence theorems for the equations of motion of a compressible viscous fluid, Ann. Rev. Fluid Mech., 13 (1981), pp. 79-95. Zbl0492.76074
  19. [19] A. Tani, On the first initial-boundary value problem of compressible viscous fluid motion, Publ. RIMS, Kyoto Univ., 13 (1977), pp. 193-253. Zbl0366.35070
  20. [20] A. Valli, An existence theorem for compressible viscous fluids, Ann. Mat. Pura App., 130 (1982), pp. 197-213. Zbl0599.76081MR663971
  21. [21] A. Valli, A correction to the paper «An existence theorem for compressible viscous fluids », Ann. Mat. Pura Appl., 132 (1982), pp. 399-400. Zbl0599.76082MR696052
  22. [22] A. Valli, Uniqueness theorems for compressible viscous fluids, especially when the Stokes relation holds, Boll. Un. Mat. It., Anal. Funz. Appl., 18-C (1981), pp. 317-325. Zbl0484.76075MR631585
  23. [23] A.I. Yol'pert - S.I. Hudjaev, On the Cauchy problem for composite systems of nonlinear differential equations, Math. USSR Sbornik, 16 (1972), pp. 517-544 (previously in Mat. Sbornik, 87 (1972), pp. 504-528 [Russian]). Zbl0251.35064MR390528

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.