Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1978)
- Volume: 5, Issue: 1, page 29-63
- ISSN: 0391-173X
Access Full Article
topHow to cite
topFoias, C., and Temam, R.. "Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.1 (1978): 29-63. <http://eudml.org/doc/83778>.
@article{Foias1978,
author = {Foias, C., Temam, R.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {fre},
number = {1},
pages = {29-63},
publisher = {Scuola normale superiore},
title = {Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation},
url = {http://eudml.org/doc/83778},
volume = {5},
year = {1978},
}
TY - JOUR
AU - Foias, C.
AU - Temam, R.
TI - Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1978
PB - Scuola normale superiore
VL - 5
IS - 1
SP - 29
EP - 63
LA - fre
UR - http://eudml.org/doc/83778
ER -
References
top- [1] S. Agmon - A. Douglis - L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, II, Comm. Pure Appl. Math., 12 (1959), pp. 623-727 et 17 (1964), pp. 35-92. Zbl0093.10401MR162050
- [2] F. Bruhat - H. Whitney, Quelques propriétés fondamentales des ensembles analytiques réels, Comm. Math. Helv., 33 (1959), pp. 132-160. Zbl0100.08101MR102094
- [3] H. Cartan, Séminaire de l'Ecole Normale Supérieure, 1951- 52 et 1953-54.
- [4] L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, 31 (1961), pp. 308-340. Zbl0116.18002MR138894
- [5] A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Annales Inst. Fourier, 16 (1966), pp. 1-95. Zbl0146.31103MR203082
- [6] G. Duvaut - J.L. Lions, Les inéquations variationnelles en Mécanique et en Physique, Dunod, Paris, 1972. Zbl0298.73001MR464857
- [7] C. Foias, Solutions statistiques des equations de Navier-Stokes, Cours au Collège de France, 1974.
- [8] C. Foias - R. Temam, On the stationary statistical solutions of the Navier-Stokes equations and turbulence, Publication Mathématiqued'Orsay, n. 120-75-28, 1975.
- [9] C. Foias - R. Temam, Structure of the set of stationary solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 30 (1977), pp. 149-164. Zbl0335.35077MR435626
- [10] M. Hervé, Several Complex Variables, Local Theory, Oxford Univ. Press and Tata Institute of Fundamental Research, 1963. Zbl0113.29003MR151632
- [11] E. Hopf, Abzweigung einer Periodischen Lösung eines Differentialsystems, Berichten der Math. Phys. Klasse der Sächsischen Akademie der Wissenschaften zu Leipzig, 94 (1942), pp. 1-22.
- [12] E. Hopf, A mathematical example displaying features of turbulence, Comm. Pure Appl. Math., 1 (1948), pp. 303-322. Zbl0031.32901MR30113
- [13] E. Hopf, Repeated branching through loss of stability, an example, Proc. Conf. Diff. Equations, University of Maryland, 1955. Zbl0073.41603MR83087
- [14] O.A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York, 1969 Zbl0184.52603MR254401
- [15] P. Lailly, Thèse, Université de Paris-Sud, 1976.
- [16] L. Landau, On the problem of turbulence, Doklady Akad. Nauk, USSR, 44 (1944), pp. 311-314. Zbl0063.03437MR11997
- [17] L. Landau - E.M. Lifshitz, Fluid Mechanics, London, Pergamon Press, 1959. Zbl0146.22405MR108121
- [18] O.E. Lanford, III, Bifurcation of periodic solutions into invariant Tori. : the work o f Ruelle and Takens, Lecture Notes in Math. n. 322, pp. 159-192, Springer-Verlga, 1973. Zbl0272.34039
- [19] J. Leray, Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures Appl., 12 (1933), pp. 1-82. Zbl0006.16702JFM59.0402.01
- [20] J. Leray, Essai sur les mouvements plans d'un liquide visqueux que limitent des parois, J. Math. Pures Appl., 13 (1934), pp. 331-418. Zbl60.0727.01JFM60.0727.01
- [21] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), pp. 193-248. JFM60.0726.05
- [22] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
- [23] J.L. Lions - E. Magenes, Non homogeneous boundary value problems and applications, Springer-Verlag, Heidelberg, New York, 1973. Zbl0223.35039MR350179
- [24] Gh. Minéa, Remarques sur l'unicité de la solution stationnaire d'une équation de type Navier-Stokes, Revue Roum. Math. Pures Appl., 21, no. 8 (1976), pp. 1071-1075. Zbl0365.76027MR433059
- [25] R. Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Math., vol. 25, Springer-Verlag (1966). Zbl0168.06003MR217337
- [26] J Nečas, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967. MR227584
- [27] P. Rabinowitz, Existence and non uniqueness of rectangular solutions of the Bénard problem, Arch. Rat. Mech. Anal., 29 (1968), pp. 32-57. Zbl0164.28704MR233557
- [28] P. Rabinowitz, Editor, Proceeding on a Conference on Bifurcation Theory held at Madison, October 1976, Academic Press.
- [29] G. De Rham, Variétés différentiables, Hermann, Paris, 1960. Zbl0089.08105
- [30] D. Ruelle - F. Takens, On the nature of turbulence, Comm. Math. Phys., 20 (1971), pp. 167-192 et 23 (1971), pp. 343-344. Zbl0227.76084MR284067
- [31] D. Sattinger, Topics in stability and bifurcation theory, Lecture Notes in Math., n. 309, Springer-Verlag, 1973. Zbl0248.35003MR463624
- [32] J.C. Saut, Exposé dans le séminaire d'Equations aux Dérivées Partielles non linéaires d'Orsay, 1975-76, Publication Mathématique d'Orsay, en cours de parution.
- [33] R. Temam, Introduction à certains problèmes de valeurs propres non linéaires, Exposé de Séminaire rédigé par J. C. Saut, 1972.
- [34] R. Temam, On the theory and numerical analysis of Navier-Stokes equations, Lecture Notes n. 9, 1973, Department of Mathematics, University of Maryland. Zbl0273.35002
- [35] R. Temam, Navier-Stokes equations, theory and numerical analysis, North-Holland, Amsterdam, 1977. Zbl0383.35057MR609732
- [36] R. Temam, Turbulence and Navier-Stokes equation, Proceeding of a Conference held at Orsay, Lecture Notes in Mathematics, vol. 565, Springer-Verlag, 1976. Zbl0336.00012MR438886
- [37] W. Velte, Stabilitäts und Vevrweigung stationärer Lösungen der Navier-Stokesschen Gleichungen beim Taylor problem, Arch. Rat. Mech. Anal., 22 (1966), pp. 1-14. Zbl0233.76054MR191226
- [38] W. Velte, Stabilitätsverhalten und Verweigung Stationärer Lôsungen der Navier-Stokesschen Gleichungen, Arch. Rat. Mech. Anal., 16 (1964), pp. 97-125. Zbl0131.41808MR182240
- [39] I.I. Vorovich - V.I. Yudovich, Stationary flows of incompressible viscous fluids, Mat. Sborn., 53 (1961), pp. 393-428.
Citations in EuDML Documents
top- Atanda Boussari, Erich Maschke, Bernard Saramito, Steady tearing mode instabilities with a resistivity depending on a flux function
- H. Beirão Da Veiga, On the barotropic motion of compressible perfect fluids
- H. Beirão da Veiga, Viscous Incompressible Flows Under Stress-Free Boundary Conditions. The Smoothness Effect of Near Orthogonality
- R. V. Saraykar, N. E. Joshi, Structure of the set of stationary solutions of viscous hydromagnetic equations with diffusivity
- Tahar-Zamène Boulmezaoud, Yvon Maday, Tahar Amari, On the linear force-free fields in bounded and unbounded three-dimensional domains
- Pierangelo Marcati, Albert Milani, Fluid flow in macromolecular systems and related perturbation problems
- Nicolas Besse, Dietmar Kröner, Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system
- R. Temam, Qualitative Properties of Navier-Stokes Equations
- Paolo Secchi, Existence theorems for compressible viscous fluids having zero shear viscosity
- Elżbieta Motyl, Stability for a certain class of numerical methods – abstract approach and application to the stationary Navier-Stokes equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.