A generalization of Vesentini and Wermer's theorems

Zbigniew Slodkowski

Rendiconti del Seminario Matematico della Università di Padova (1986)

  • Volume: 75, page 157-171
  • ISSN: 0041-8994

How to cite

top

Slodkowski, Zbigniew. "A generalization of Vesentini and Wermer's theorems." Rendiconti del Seminario Matematico della Università di Padova 75 (1986): 157-171. <http://eudml.org/doc/108017>.

@article{Slodkowski1986,
author = {Slodkowski, Zbigniew},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {preanalytic family; invertible operators; analytic operator-valued functions; topological embeddings; invariant subspace; subharmonic function; subanalytic family of complex Banach spaces; analytic family of bounded operators with locally uniformly bounded norm; quasi-subharmonic; set-valued function},
language = {eng},
pages = {157-171},
publisher = {Seminario Matematico of the University of Padua},
title = {A generalization of Vesentini and Wermer's theorems},
url = {http://eudml.org/doc/108017},
volume = {75},
year = {1986},
}

TY - JOUR
AU - Slodkowski, Zbigniew
TI - A generalization of Vesentini and Wermer's theorems
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1986
PB - Seminario Matematico of the University of Padua
VL - 75
SP - 157
EP - 171
LA - eng
KW - preanalytic family; invertible operators; analytic operator-valued functions; topological embeddings; invariant subspace; subharmonic function; subanalytic family of complex Banach spaces; analytic family of bounded operators with locally uniformly bounded norm; quasi-subharmonic; set-valued function
UR - http://eudml.org/doc/108017
ER -

References

top
  1. [1] B. AupetitAnalytic multivalued functions in Banach algebras and uniform algebras, Advances in Mathematics, 44 (1982), pp. 18-60. Zbl0486.46041MR654547
  2. [2] B. Aupetit - J. WERMER, Capacity and uniform algebras, J. Functional Analysis, 28 (1978), pp. 386-400. Zbl0378.46045MR496966
  3. [3] J. Leiterer, Banach coherent analytic Frechet sheaves, Math. Nachr., 85 (1978), pp. 91-109. Zbl0409.32017MR517643
  4. [4] K. Oka, Note sur les familles de fonctions analytiques multiformes, etc., J. Sci. Hiroshima Univ., Ser. A, 4 (1934), pp. 93-98. Zbl0011.31403
  5. [5] T.J. Ransford, Analytic multivalued functions, Thesis for Smith Competition, University of Cambridge (1983). 
  6. [6] R. Rochberg et al., A theory of complex interpolation for families of Banach spaces, Advances in Mathematics, 43 (1982), pp. 203-229. Zbl0501.46065MR648799
  7. [7] Z. Slodkowski, On subharmonicity of the capacity of the spectrum, Proc. Amer. Math. Soc., 81 (1981), pp. 243-249. Zbl0407.46046MR593466
  8. [8] Z. Slodkowski, Analytic set-valued functions and spectra, Math. Ann., 256 (1981), pp. 363-386. Zbl0452.46028MR626955
  9. [8a] Z. Slodkowski, Analytic set-valued functions and spectra, Preprint series of the Institute of Mathematics of the Polish Academy of Sciences (1980). Zbl0471.46034MR626955
  10. [9] Z. Slodkowski, Operators with closed ranges in spaces of analytic vector-valued functions, J. Functional Analysis (to appear). Zbl0611.46046MR865219
  11. [10] M.A. Shubin, On holomorphic families of subspaces of a Banach space, Matem. Issled. Kishinev, 5 (1970), pp. 153-165. Zbl0233.32024MR285730
  12. [11] E. Vesentini, On the subharmonicity of the spectral radius, Boll. Un. Mat. Ital., 4 (1968), pp. 427-429. MR244766
  13. [12] J. Wermer, Subharmonicity and hulls, Pacific J. Math., 58 (1975), pp. 283-290. Zbl0308.32011MR393567

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.