On the minima of functionals with linear growth

G. Anzellotti

Rendiconti del Seminario Matematico della Università di Padova (1986)

  • Volume: 75, page 91-110
  • ISSN: 0041-8994

How to cite

top

Anzellotti, G.. "On the minima of functionals with linear growth." Rendiconti del Seminario Matematico della Università di Padova 75 (1986): 91-110. <http://eudml.org/doc/108033>.

@article{Anzellotti1986,
author = {Anzellotti, G.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {minimum point; functional with linear growth; singular support},
language = {eng},
pages = {91-110},
publisher = {Seminario Matematico of the University of Padua},
title = {On the minima of functionals with linear growth},
url = {http://eudml.org/doc/108033},
volume = {75},
year = {1986},
}

TY - JOUR
AU - Anzellotti, G.
TI - On the minima of functionals with linear growth
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1986
PB - Seminario Matematico of the University of Padua
VL - 75
SP - 91
EP - 110
LA - eng
KW - minimum point; functional with linear growth; singular support
UR - http://eudml.org/doc/108033
ER -

References

top
  1. [1] G. Anzfllotti, Dirichlet problem and removable singularities for functionals with linear growth, Boll. UMI, Analisi Funzionale e Applicazioni, Serie V, 18-C, no. 1, (1981), pp. 141-159. Zbl0472.49030MR631574
  2. [2] G. Anzellotti, On the extremal stress and strain in Hencky plasticity, Duke Math. J., March 1984. Zbl0548.73022MR744291
  3. [3] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Annali di Mat. Pura e Appl., IV, 135 (1983), pp. 293-318. Zbl0572.46023MR750538
  4. [4] G. Anzellotti, The Euler equation for functionals with linear growth, to appear in Transactions of A.M.S. Zbl0611.49018MR792808
  5. [5] G. Anzellotti, Traces of bounded vector fields and the divergence theorem, to appear. 
  6. [6] G. Anzellotti - M. GIAQUINTA, Existence of the displacement field for an elasto-plastic body subject to Hencky's law and Von Mises yield condition, Manuscripta Math., 32 (1980), pp. 101-136. Zbl0465.73022MR592713
  7. [7] G. Dal Maso, Integral representation on BY(Ω) of Γ-limits of variational integrals, Manuscripta Math., 30 (1980), pp. 387-416. Zbl0435.49016
  8. [8] I. Ekeland - R. Temam, Analyse Convexe et problèmes variationnels (Paris, 1974). Zbl0281.49001MR463993
  9. [9] C. Gerhardt, On the regularity of solutions to variational problems in BV(Ω), Math. Z., 149 (1976), 281-286. Zbl0317.49052
  10. [10] M. Giaquinta, On the Dirichlet problem for surfaces of prescribed mean curvature, Manuscripta Math., 12 (1974), pp. 73-86. Zbl0276.35038MR336532
  11. [11] M. Giaquinta - G. Modica - J. Soucek, Functionals with linear growth in the Calculus of Variations, Comm. Math. Univ. Carolinae, 20 (1979), pp. 143-171. Zbl0409.49006MR526154
  12. [12] E. Giusti, Superfici cartesiane di area minima, Rend. Sem. Mat. Fis. Milano, 40 (1970), pp. 3-21. Zbl0219.53008MR291963
  13. [13] E. Giusti, On the equation of prescribed mean curvature: existence and uniqneness without boundary conditions, Inv. Math., 46 (1978), pp. 111-137. Zbl0381.35035MR487722
  14. [14] M. Miranda, Un principio di massimo forte per le frontiere minimali, Rend. Sem. Mat. Padova, 45 (1971), pp. 355-366. Zbl0266.49034MR303390
  15. [15] R.T. Rockafellar, Convex Analysis (Princeton Univ. Press, 1969). Zbl0193.18401MR1451876
  16. [16] J. Stoer - C. Witzgall, Convexity and Optimization in Finite Dimensions I, (Springer, Berlin, 1970). Zbl0203.52203MR286498
  17. [17] R. Temam, An existence theorem for a variational problem of plasticity, Proceedings of the Journées P. de Fermat (Pitman, 1980). Zbl0455.73036MR616857

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.