... Minimizing Currents.
We show how to capture the gradient concentration of the solutions of Dirichlet-type problems subjected to large sources of order concentrated on an -neighborhood of a hypersurface of the domain. To this end we define the gradient Young-concentration measures generated by sequences of finite energy and establish a very simple characterization of these measures.
We show how to capture the gradient concentration of the solutions of Dirichlet-type problems subjected to large sources of order concentrated on an ε-neighborhood of a hypersurface of the domain. To this end we define the gradient Young-concentration measures generated by sequences of finite energy and establish a very simple characterization of these measures.
For vector valued maps, convergence in and of all minors of the Jacobian matrix in is equivalent to convergence weakly in the sense of currents and in area for graphs. We show that maps defined on domains of dimension can be approximated strongly in this sense by smooth maps if and only if the same property holds for the restriction to a.e. 2-dimensional plane intersecting the domain.
We analyze a nonlinear discrete scheme depending on second-order finite differences. This is the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional. In two dimension we give a compactness result showing that the continuous problem approximating this difference scheme is still defined on special functions with bounded hessian, and we give an upper and a lower...
We analyze a nonlinear discrete scheme depending on second-order finite differences. This is the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional. In two dimension we give a compactness result showing that the continuous problem approximating this difference scheme is still defined on special functions...
In the present paper, we motivate and describe a numerical approach in order to detect the creation of fractures in a facet of a crystal evolving by anisotropic mean curvature. The result appears to be in accordance with the known examples of facet-breaking. Graphical simulations are included.
We study the gradient flow of the L2−norm of the second fundamental form for smooth immersions of two-dimensional surfaces into compact Riemannian manifolds. By analogy with the results obtained in [10] and [11] for the Willmore flow, we prove lifespan estimates in terms of the L2−concentration of the second fundamental form of the initial data and we show the existence of blowup limits. Under special condition both on the initial data and on the target manifold, we prove a long time existence result...
We provide an approximation of Mather variational problem by finite dimensional minimization problems in the framework of Γ-convergence. By a linear programming interpretation as done in [Evans and Gomes, ESAIM: COCV 8 (2002) 693–702] we state a duality theorem for the Mather problem, as well a finite dimensional approximation for the dual problem.
The duality theory for the Monge-Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be Polish and equipped with Borel probability measures μ and ν. The transport cost function c: X × Y → [0,∞] is assumed to be Borel. Our main result states that in this setting there is no duality gap provided the optimal transport problem is formulated in a suitably relaxed way. The relaxed transport problem is defined as the limiting cost of the partial transport...
The dual attainment of the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y → [0,∞] is assumed to be Borel measurable. We show that a dual optimizer always exists, provided we interpret it as a projective limit of certain finitely additive measures. Our methods are functional analytic and rely on Fenchel’s perturbation technique.
The dual attainment of the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y → [0,∞] is assumed to be Borel measurable. We show that a dual optimizer always exists, provided we interpret it as a projective limit of certain finitely additive measures. Our methods are functional analytic...
In this note we provide a new geometric lower bound on the so-called Grad’s number of a domain in terms of how far is from being axisymmetric. Such an estimate is important in the study of the trend to equilibrium for the Boltzmann equation for dilute gases.
In this note we provide a new geometric lower bound on the so-called Grad's number of a domain Ω in terms of how far Ω is from being axisymmetric. Such an estimate is important in the study of the trend to equilibrium for the Boltzmann equation for dilute gases.
In this paper, a lower bound is established for the local energy of partial sum of eigenfunctions for Laplace-Beltrami operators (in Riemannian manifolds with low regularity data) with general boundary condition. This result is a consequence of a new pointwise and weighted estimate for Laplace-Beltrami operators, a construction of some nonnegative function with arbitrary given critical point location in the manifold, and also two interpolation results for solutions of elliptic equations with lateral...