Periodic solutions near an equilibrium of a differential equation with a first integral

Wacław Marzantowicz; Adam Parusiński

Rendiconti del Seminario Matematico della Università di Padova (1987)

  • Volume: 77, page 193-206
  • ISSN: 0041-8994

How to cite

top

Marzantowicz, Wacław, and Parusiński, Adam. "Periodic solutions near an equilibrium of a differential equation with a first integral." Rendiconti del Seminario Matematico della Università di Padova 77 (1987): 193-206. <http://eudml.org/doc/108061>.

@article{Marzantowicz1987,
author = {Marzantowicz, Wacław, Parusiński, Adam},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {autonomous systems; bifurcation; first integral; eigenvalue},
language = {eng},
pages = {193-206},
publisher = {Seminario Matematico of the University of Padua},
title = {Periodic solutions near an equilibrium of a differential equation with a first integral},
url = {http://eudml.org/doc/108061},
volume = {77},
year = {1987},
}

TY - JOUR
AU - Marzantowicz, Wacław
AU - Parusiński, Adam
TI - Periodic solutions near an equilibrium of a differential equation with a first integral
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1987
PB - Seminario Matematico of the University of Padua
VL - 77
SP - 193
EP - 206
LA - eng
KW - autonomous systems; bifurcation; first integral; eigenvalue
UR - http://eudml.org/doc/108061
ER -

References

top
  1. [1] J. Alexander - J. Yorke, Global bifurcation of periodic orbits, Amer. J. Math., 100 (1978), pp. 263-292. Zbl0386.34040MR474406
  2. [2] S. Chow - J. MALLET-PARET - J. YORKE, Global Hopf bifurcation from multiple eigenvalue, Nonlinear Anal., 2 (1978), pp. 753-763. Zbl0407.47039MR512165
  3. [3] N. Dancer, A new degree for S1-invariant gradient mappings and applications, notes. 
  4. [4] E. Fadell - P. RABINOWITZ, Generalized cohomological index theories for Lie group action with an application to bifurcation questions for Hamiltonian systems, Invent. Math., 45 (1978), pp. 139-174. Zbl0403.57001MR478189
  5. [5] J. Ize, Obstruction theory and multiparameter Hopf bifurcation, Inst. Mat. Applic. Sis. UNAM, Mexico, No. 322 (1982). 
  6. [6] W. Marzantowicz, Periodic solutions near an equilibrium of a differential equation with a first integral, SISSA, Trieste, Preprint No. 45/84/M (1984). 
  7. [7] J. Moser, Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math., 29 (1976), pp. 727-746. Zbl0346.34024MR426052
  8. [8] D. Schmidt, Hopf bifurcation and the center theorem of Liapunov with resonance cases, J. Math. Anal. Appl., 63 (1978), pp. 354-370. Zbl0383.34026MR477298
  9. [9] A. Weinstein, Normal modes for non-linear Hamiltonian systems, Invent. Math., 20 (1973), pp. 47-57. Zbl0264.70020MR328222

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.