# Periodic solutions near an equilibrium of a differential equation with a first integral

Wacław Marzantowicz; Adam Parusiński

Rendiconti del Seminario Matematico della Università di Padova (1987)

- Volume: 77, page 193-206
- ISSN: 0041-8994

## Access Full Article

top## How to cite

topMarzantowicz, Wacław, and Parusiński, Adam. "Periodic solutions near an equilibrium of a differential equation with a first integral." Rendiconti del Seminario Matematico della Università di Padova 77 (1987): 193-206. <http://eudml.org/doc/108061>.

@article{Marzantowicz1987,

author = {Marzantowicz, Wacław, Parusiński, Adam},

journal = {Rendiconti del Seminario Matematico della Università di Padova},

keywords = {autonomous systems; bifurcation; first integral; eigenvalue},

language = {eng},

pages = {193-206},

publisher = {Seminario Matematico of the University of Padua},

title = {Periodic solutions near an equilibrium of a differential equation with a first integral},

url = {http://eudml.org/doc/108061},

volume = {77},

year = {1987},

}

TY - JOUR

AU - Marzantowicz, Wacław

AU - Parusiński, Adam

TI - Periodic solutions near an equilibrium of a differential equation with a first integral

JO - Rendiconti del Seminario Matematico della Università di Padova

PY - 1987

PB - Seminario Matematico of the University of Padua

VL - 77

SP - 193

EP - 206

LA - eng

KW - autonomous systems; bifurcation; first integral; eigenvalue

UR - http://eudml.org/doc/108061

ER -

## References

top- [1] J. Alexander - J. Yorke, Global bifurcation of periodic orbits, Amer. J. Math., 100 (1978), pp. 263-292. Zbl0386.34040MR474406
- [2] S. Chow - J. MALLET-PARET - J. YORKE, Global Hopf bifurcation from multiple eigenvalue, Nonlinear Anal., 2 (1978), pp. 753-763. Zbl0407.47039MR512165
- [3] N. Dancer, A new degree for S1-invariant gradient mappings and applications, notes.
- [4] E. Fadell - P. RABINOWITZ, Generalized cohomological index theories for Lie group action with an application to bifurcation questions for Hamiltonian systems, Invent. Math., 45 (1978), pp. 139-174. Zbl0403.57001MR478189
- [5] J. Ize, Obstruction theory and multiparameter Hopf bifurcation, Inst. Mat. Applic. Sis. UNAM, Mexico, No. 322 (1982).
- [6] W. Marzantowicz, Periodic solutions near an equilibrium of a differential equation with a first integral, SISSA, Trieste, Preprint No. 45/84/M (1984).
- [7] J. Moser, Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math., 29 (1976), pp. 727-746. Zbl0346.34024MR426052
- [8] D. Schmidt, Hopf bifurcation and the center theorem of Liapunov with resonance cases, J. Math. Anal. Appl., 63 (1978), pp. 354-370. Zbl0383.34026MR477298
- [9] A. Weinstein, Normal modes for non-linear Hamiltonian systems, Invent. Math., 20 (1973), pp. 47-57. Zbl0264.70020MR328222

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.