Periodic solutions near an equilibrium of a differential equation with a first integral
Wacław Marzantowicz; Adam Parusiński
Rendiconti del Seminario Matematico della Università di Padova (1987)
- Volume: 77, page 193-206
- ISSN: 0041-8994
Access Full Article
topHow to cite
topMarzantowicz, Wacław, and Parusiński, Adam. "Periodic solutions near an equilibrium of a differential equation with a first integral." Rendiconti del Seminario Matematico della Università di Padova 77 (1987): 193-206. <http://eudml.org/doc/108061>.
@article{Marzantowicz1987,
author = {Marzantowicz, Wacław, Parusiński, Adam},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {autonomous systems; bifurcation; first integral; eigenvalue},
language = {eng},
pages = {193-206},
publisher = {Seminario Matematico of the University of Padua},
title = {Periodic solutions near an equilibrium of a differential equation with a first integral},
url = {http://eudml.org/doc/108061},
volume = {77},
year = {1987},
}
TY - JOUR
AU - Marzantowicz, Wacław
AU - Parusiński, Adam
TI - Periodic solutions near an equilibrium of a differential equation with a first integral
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1987
PB - Seminario Matematico of the University of Padua
VL - 77
SP - 193
EP - 206
LA - eng
KW - autonomous systems; bifurcation; first integral; eigenvalue
UR - http://eudml.org/doc/108061
ER -
References
top- [1] J. Alexander - J. Yorke, Global bifurcation of periodic orbits, Amer. J. Math., 100 (1978), pp. 263-292. Zbl0386.34040MR474406
- [2] S. Chow - J. MALLET-PARET - J. YORKE, Global Hopf bifurcation from multiple eigenvalue, Nonlinear Anal., 2 (1978), pp. 753-763. Zbl0407.47039MR512165
- [3] N. Dancer, A new degree for S1-invariant gradient mappings and applications, notes.
- [4] E. Fadell - P. RABINOWITZ, Generalized cohomological index theories for Lie group action with an application to bifurcation questions for Hamiltonian systems, Invent. Math., 45 (1978), pp. 139-174. Zbl0403.57001MR478189
- [5] J. Ize, Obstruction theory and multiparameter Hopf bifurcation, Inst. Mat. Applic. Sis. UNAM, Mexico, No. 322 (1982).
- [6] W. Marzantowicz, Periodic solutions near an equilibrium of a differential equation with a first integral, SISSA, Trieste, Preprint No. 45/84/M (1984).
- [7] J. Moser, Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math., 29 (1976), pp. 727-746. Zbl0346.34024MR426052
- [8] D. Schmidt, Hopf bifurcation and the center theorem of Liapunov with resonance cases, J. Math. Anal. Appl., 63 (1978), pp. 354-370. Zbl0383.34026MR477298
- [9] A. Weinstein, Normal modes for non-linear Hamiltonian systems, Invent. Math., 20 (1973), pp. 47-57. Zbl0264.70020MR328222
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.