Generalized Cohomological Index Theories for Lie Group Actions with an Application to Bifurcation Questions for Hamiltonian Systems.

E.R. Fadell; P.H. Rabinowitz

Inventiones mathematicae (1978)

  • Volume: 45, page 139-174
  • ISSN: 0020-9910; 1432-1297/e

How to cite

top

Fadell, E.R., and Rabinowitz, P.H.. "Generalized Cohomological Index Theories for Lie Group Actions with an Application to Bifurcation Questions for Hamiltonian Systems.." Inventiones mathematicae 45 (1978): 139-174. <http://eudml.org/doc/142541>.

@article{Fadell1978,
author = {Fadell, E.R., Rabinowitz, P.H.},
journal = {Inventiones mathematicae},
keywords = {Cohomological Index; Free Actions of a Compact Lie Group; Classifying Space; Hamiltonian Systems},
pages = {139-174},
title = {Generalized Cohomological Index Theories for Lie Group Actions with an Application to Bifurcation Questions for Hamiltonian Systems.},
url = {http://eudml.org/doc/142541},
volume = {45},
year = {1978},
}

TY - JOUR
AU - Fadell, E.R.
AU - Rabinowitz, P.H.
TI - Generalized Cohomological Index Theories for Lie Group Actions with an Application to Bifurcation Questions for Hamiltonian Systems.
JO - Inventiones mathematicae
PY - 1978
VL - 45
SP - 139
EP - 174
KW - Cohomological Index; Free Actions of a Compact Lie Group; Classifying Space; Hamiltonian Systems
UR - http://eudml.org/doc/142541
ER -

Citations in EuDML Documents

top
  1. Danuta Rozpłoch-Nowakowska, Equivariant maps of joins of finite G-sets and an application to critical point theory
  2. Wacław Marzantowicz, Adam Parusiński, Periodic solutions near an equilibrium of a differential equation with a first integral
  3. Yiming Long, Periodic solutions of perturbed superquadratic hamiltonian systems
  4. Claude Viterbo, A proof of Weinstein’s conjecture in 2 n
  5. E. N. Dancer, A new degree for S 1 -invariant gradient mappings and applications
  6. Thomas Bartsch, Bifurcation of stationary and heteroclinic orbits for parametrized gradient-like flows
  7. Helmut Hofer, Lagrangian embeddings and critical point theory
  8. Thomas Bartsch, A generalization of the Weinstein-Moser theorems on periodic orbits of a hamiltonian system near an equilibrium
  9. Nicole Desolneux-Moulis, Orbites périodiques des systèmes hamiltoniens autonomes
  10. Marco Degiovanni, Sergio Lancelotti, Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity

NotesEmbed ?

top

You must be logged in to post comments.