Spaces of urelements, II
Rendiconti del Seminario Matematico della Università di Padova (1987)
- Volume: 77, page 305-315
- ISSN: 0041-8994
Access Full Article
topHow to cite
topBrunner, Norbert. "Spaces of urelements, II." Rendiconti del Seminario Matematico della Università di Padova 77 (1987): 305-315. <http://eudml.org/doc/108067>.
@article{Brunner1987,
author = {Brunner, Norbert},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Axiom of choice; Mostowski model; urelements; Dedekind-finite Lindelöf -spaces; hereditarily locally Lindelöf},
language = {eng},
pages = {305-315},
publisher = {Seminario Matematico of the University of Padua},
title = {Spaces of urelements, II},
url = {http://eudml.org/doc/108067},
volume = {77},
year = {1987},
}
TY - JOUR
AU - Brunner, Norbert
TI - Spaces of urelements, II
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1987
PB - Seminario Matematico of the University of Padua
VL - 77
SP - 305
EP - 315
LA - eng
KW - Axiom of choice; Mostowski model; urelements; Dedekind-finite Lindelöf -spaces; hereditarily locally Lindelöf
UR - http://eudml.org/doc/108067
ER -
References
top- [1] C.E. Aull, Classification of spaces, Bull. Acad. Polon. Sc., 15 (1967), pp. 773-778. Zbl0171.43403MR225278
- [2] P. Bankston, Total negation of a topological property, Illinois J. M., 23 (1979), pp. 241-252. Zbl0405.54003MR528560
- [3] F. Bernstein: Theorie der trigonometrischen Reihe, Sitzingsber. Leipzig, 60, (1908), pp. 325-338. Zbl39.0474.02JFM39.0474.02
- [4] A. Blass, A model without ultrafilters, Bull. Acad. Polon. Sc., 25 (1977), pp. 329-331. Zbl0365.02054MR476510
- [5] N. Brunner, σ-kompakte Raüme, Manuscripta Math., 38 (1982), pp. 325-379. Zbl0504.54004
- [6] N. Brunner, Lindelöf-Raüme und AC, Anz. Akad. Wiss. Wien, 119 (1982), pp. 161-165. Zbl0529.03030MR728812
- [7] N. Brunner, Dedekind-Endlichkeit und Wohlordenbarkeit, Monatshefte Math., 94 (1982), pp. 9-31. Zbl0481.03030MR670012
- [8] N. Brunner, Spaces of Urelements, Rend. Sem. Mat. Univ. Padova, 74 (1985), pp. 7-13. Zbl0601.54023MR818710
- [9] J.R. Buddenhagen, Subsets of ω, Amer. Math. Monthly, 78 (1971), pp. 536-537.
- [10] J.G. Ceder, Resolvable spaces, Fund. Math., 55 (1964), pp. 87-93. Zbl0139.40401MR163279
- [11] W.W. Comfort, A Stone-Čech theorem without AC, Fund. Math., 63 (1968), pp. 97-110. Zbl0185.26401MR236880
- [12] E.K. Van Douwen, Horrors of topology, Proc. Amer. Math. Soc., 95 (1985), pp. 101-105. Zbl0574.03039MR796455
- [13] A.G. El'kin, Maximal connected T2-spaces, Mat. Zametki, 26 (1979), pp. 939-948. Zbl0435.54018MR567231
- [14] R. Engelking, General topology, Polish Sc. Publ., Warsaw (1977). Zbl0373.54002MR500780
- [15] U. Felgner, Models of ZF, Springer Lecture Notes223 (1971). Zbl0269.02029MR351810
- [16] M. Gitik, All uncountable cardinals can be singular, Israel J. Math., 35 (1980), pp. 61-88. Zbl0439.03036MR576462
- [17] H. Herrlich - V. KANNAN - H. RAJAGOPALAN, Compactness, Proc. Amer. Math. Soc., 77 (1979), pp. 421-423. Zbl0417.54004MR545607
- [18] E. Hewitt, A problem in set theoretic topology, Duke Math. J., 10 (1943), pp. 309-333. Zbl0060.39407MR8692
- [19] T. Jech, The axiom of choice, North Holland Studies in Logic, 75 (1973). Zbl0259.02051MR396271
- [20] M. Katetov, Disjoint dense subsets, Math. Sbornik, 21 (1947), pp. 3-12. MR21679
- [21] W.F. Lindgren - P. Fletcher, Problems concerning countably compact spaces, Rocky Mt. J. Math., 5 (1975), pp. 95-106. Zbl0296.54018MR423298
- [22] N. Lusin - W. Sierpinski, Une décomposition, Compt. Rend. Acad. Paris, 165 (1917), pp. 422-424. Zbl46.0294.01JFM46.0294.01
- [23] P.L. Sharma, Lindelöf property in MI spaces, Illinois J. Math., 25 (1981), 644-648. Zbl0514.54018MR630841
- [24] E. Specker, Axiomatik der Mengenlehre, Z. Math. Logik und Grundl. Math., 3 (1957), pp. 173-210. Zbl0079.07605MR99297
- [25] G.T. Whyburn, Connected sets, Trans. Amer. Math. Soc., 32 (1930), pp. 926-943. Zbl56.1138.03MR1501572JFM56.1138.03
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.