Products of Lindelöf -spaces are Lindelöf – in some models of ZF
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 2, page 319-333
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHerrlich, Horst. "Products of Lindelöf $T_2$-spaces are Lindelöf – in some models of ZF." Commentationes Mathematicae Universitatis Carolinae 43.2 (2002): 319-333. <http://eudml.org/doc/249001>.
@article{Herrlich2002,
abstract = {The stability of the Lindelöf property under the formation of products and of sums is investigated in ZF (= Zermelo-Fraenkel set theory without AC, the axiom of choice). It is • not surprising that countable summability of the Lindelöf property requires some weak choice principle, • highly surprising, however, that productivity of the Lindelöf property is guaranteed by a drastic failure of AC, • amusing that finite summability of the Lindelöf property takes place if either some weak choice principle holds or if AC fails drastically. Main results: 1. Lindelöf = compact for $T_1$-spaces iff $\text\{\bf CC\}(\mathbb \{R\})$, the axiom of countable choice for subsets of the reals, fails. 2. Lindelöf $T_1$-spaces are finitely productive iff $\text\{\bf CC\}(\mathbb \{R\})$ fails. 3. Lindelöf $T_2$-spaces are productive iff $\text\{\bf CC\}(\mathbb \{R\})$ fails and $\text\{\bf BPI\}$, the Boolean prime ideal theorem, holds. 4. Arbitrary products and countable sums of compact $T_1$-spaces are Lindelöf iff $\text\{\bf AC\}$ holds. 5. Lindelöf spaces are countably summable iff $\text\{\bf CC\}$, the axiom of countable choice, holds. 6. Lindelöf spaces are finitely summable iff either $\text\{\bf CC\}$ holds or $\text\{\bf CC\}(\mathbb \{R\})$ fails. 7. Lindelöf $T_2$-spaces are $T_3$ spaces iff $\text\{\bf CC\}(\mathbb \{R\})$ fails. 8. Totally disconnected Lindelöf $T_2$-spaces are zerodimensional iff $\text\{\bf CC\}(\mathbb \{R\})$ fails.},
author = {Herrlich, Horst},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {axiom of choice; axiom of countable choice; Lindelöf space; compact space; product; sum; axiom of choice; axiom of countable choice; Lindelöf space; compact space; product; sum},
language = {eng},
number = {2},
pages = {319-333},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Products of Lindelöf $T_2$-spaces are Lindelöf – in some models of ZF},
url = {http://eudml.org/doc/249001},
volume = {43},
year = {2002},
}
TY - JOUR
AU - Herrlich, Horst
TI - Products of Lindelöf $T_2$-spaces are Lindelöf – in some models of ZF
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 2
SP - 319
EP - 333
AB - The stability of the Lindelöf property under the formation of products and of sums is investigated in ZF (= Zermelo-Fraenkel set theory without AC, the axiom of choice). It is • not surprising that countable summability of the Lindelöf property requires some weak choice principle, • highly surprising, however, that productivity of the Lindelöf property is guaranteed by a drastic failure of AC, • amusing that finite summability of the Lindelöf property takes place if either some weak choice principle holds or if AC fails drastically. Main results: 1. Lindelöf = compact for $T_1$-spaces iff $\text{\bf CC}(\mathbb {R})$, the axiom of countable choice for subsets of the reals, fails. 2. Lindelöf $T_1$-spaces are finitely productive iff $\text{\bf CC}(\mathbb {R})$ fails. 3. Lindelöf $T_2$-spaces are productive iff $\text{\bf CC}(\mathbb {R})$ fails and $\text{\bf BPI}$, the Boolean prime ideal theorem, holds. 4. Arbitrary products and countable sums of compact $T_1$-spaces are Lindelöf iff $\text{\bf AC}$ holds. 5. Lindelöf spaces are countably summable iff $\text{\bf CC}$, the axiom of countable choice, holds. 6. Lindelöf spaces are finitely summable iff either $\text{\bf CC}$ holds or $\text{\bf CC}(\mathbb {R})$ fails. 7. Lindelöf $T_2$-spaces are $T_3$ spaces iff $\text{\bf CC}(\mathbb {R})$ fails. 8. Totally disconnected Lindelöf $T_2$-spaces are zerodimensional iff $\text{\bf CC}(\mathbb {R})$ fails.
LA - eng
KW - axiom of choice; axiom of countable choice; Lindelöf space; compact space; product; sum; axiom of choice; axiom of countable choice; Lindelöf space; compact space; product; sum
UR - http://eudml.org/doc/249001
ER -
References
top- Bentley H.L., Herrlich H., Countable choice and pseudometric spaces, Topology Appl. 85 (1998), 153-164. (1998) Zbl0922.03068MR1617460
- Börger R., On powers of a Lindelöf space, preprint, November 2001.
- Brunner N., -kompakte Räume, Manuscripta Math. 38 (1982), 375-379. (1982) Zbl0504.54004MR0667922
- Brunner N., Lindelöf Räume und Auswahlaxiom, Anz. Österreich. Akad. der Wiss. Math. Nat. Kl. 119 (1982), 161-165. (1982) MR0728812
- Brunner N., Spaces of Urelements, II, Rend. Sem. Mat. Univ. Padova 77 (1987), 305-315. (1987) Zbl0668.54014MR0904626
- Church A., Alternatives to Zermelo's assumption, Trans. Amer. Math. Soc. 29 (1927), 178-208. (1927) MR1501383
- Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Feferman S., Levy A., Independence results in set theory by Cohen's method, Notices Amer. Math. Soc. 10 (1963), 593. (1963)
- Gitik M., All uncountable cardinals can be singular, Israel J. Math. 35 (1980), 61-88. (1980) Zbl0439.03036MR0576462
- Good C., Tree I.J., Continuing horrors of topology without choice, Topology Appl. 63 (1995), 79-90. (1995) Zbl0822.54001MR1328621
- Gutierres G., Sequential topological conditions without AC, preprint, 2001.
- Herrlich H., Compactness and the axiom of choice, Appl. Categ. Structures 3 (1995), 1-15. (1995) MR1393958
- Herrlich H., Keremedis K., On countable products of finite Hausdorff spaces, Math. Logic Quart. 46 (2000), 537-542. (2000) Zbl0959.03033MR1791548
- Herrlich H., Strecker G.E., When is Lindelöf?, Comment. Math. Univ. Carolinae 38 (1997), 553-556. (1997) Zbl0938.54008MR1485075
- Howard P., Rubin J.E., Consequences of the Axiom of Choice, AMS Math. Surveys and Monographs 59 AMS, Providence, RI, 1998. Zbl0947.03001MR1637107
- Jech T.J., The Axiom of Choice, North-Holland, Amsterdam, 1973. Zbl0259.02052MR0396271
- Kelley J., The Tychonoff product theorem implies the axiom of choice, Fund. Math. 37 (1950), 75-76. (1950) Zbl0039.28202MR0039982
- Keremedis K., Disasters in topology without the axiom of choice, Arch. Math. Logic, 2000, to appear. Zbl1027.03040MR1867681
- Keremedis K., Countable disjoint unions in topology and some weak forms of the axiom of choice, Arch. Math. Logic, submitted.
- Keremedis K., Tachtsis E., On Lindelöf metric spaces and weak forms of the axiom of choice, Math. Logic Quart. 46 (2000), 35-44. (2000) Zbl0952.03060MR1736648
- Lindelöf E., Sur quelques points de la théorie des ensembles, C.R. Acad. Paris 137 (1903), 697-700. (1903)
- Mycielski J., Steinhaus H., A mathematical axiom contradicting the axiom of choice, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 10 (1962), 1-3. (1962) Zbl0106.00804MR0140430
- Rhineghost Y.T., The naturals are Lindelöf iff Ascoli holds, Categorical Perspectives (eds. J. Koslowski and A. Melton), Birkhäuser, 2001. Zbl0983.03039MR1827669
- Rubin H., Scott D., Some topological theorems equivalent to the Boolean prime ideal theorem, Bull. Amer. Math. Soc. 60 (1954), 389. (1954)
- Sageev G., An independence result concerning the axiom of choice, Annals Math. Logic 8 (1975), 1-184. (1975) Zbl0306.02060MR0366668
- Specker E., Zur Axiomatik der Mengenlehre (Fundierungs- und Auswahlaxiom), Z. Math. Logik Grundlagen Math. 3 (1957), 173-210. (1957) Zbl0079.07605MR0099297
- van Douwen E.K., Horrors of topology without AC: a nonnormal orderable space, Proc. Amer. Math. Soc. 95 (1985), 101-105. (1985) Zbl0574.03039MR0796455
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.