Products of Lindelöf T 2 -spaces are Lindelöf – in some models of ZF

Horst Herrlich

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 2, page 319-333
  • ISSN: 0010-2628

Abstract

top
The stability of the Lindelöf property under the formation of products and of sums is investigated in ZF (= Zermelo-Fraenkel set theory without AC, the axiom of choice). It is • not surprising that countable summability of the Lindelöf property requires some weak choice principle, • highly surprising, however, that productivity of the Lindelöf property is guaranteed by a drastic failure of AC, • amusing that finite summability of the Lindelöf property takes place if either some weak choice principle holds or if AC fails drastically. Main results: 1. Lindelöf = compact for T 1 -spaces iff CC ( ) , the axiom of countable choice for subsets of the reals, fails. 2. Lindelöf T 1 -spaces are finitely productive iff CC ( ) fails. 3. Lindelöf T 2 -spaces are productive iff CC ( ) fails and BPI , the Boolean prime ideal theorem, holds. 4. Arbitrary products and countable sums of compact T 1 -spaces are Lindelöf iff AC holds. 5. Lindelöf spaces are countably summable iff CC , the axiom of countable choice, holds. 6. Lindelöf spaces are finitely summable iff either CC holds or CC ( ) fails. 7. Lindelöf T 2 -spaces are T 3 spaces iff CC ( ) fails. 8. Totally disconnected Lindelöf T 2 -spaces are zerodimensional iff CC ( ) fails.

How to cite

top

Herrlich, Horst. "Products of Lindelöf $T_2$-spaces are Lindelöf – in some models of ZF." Commentationes Mathematicae Universitatis Carolinae 43.2 (2002): 319-333. <http://eudml.org/doc/249001>.

@article{Herrlich2002,
abstract = {The stability of the Lindelöf property under the formation of products and of sums is investigated in ZF (= Zermelo-Fraenkel set theory without AC, the axiom of choice). It is • not surprising that countable summability of the Lindelöf property requires some weak choice principle, • highly surprising, however, that productivity of the Lindelöf property is guaranteed by a drastic failure of AC, • amusing that finite summability of the Lindelöf property takes place if either some weak choice principle holds or if AC fails drastically. Main results: 1. Lindelöf = compact for $T_1$-spaces iff $\text\{\bf CC\}(\mathbb \{R\})$, the axiom of countable choice for subsets of the reals, fails. 2. Lindelöf $T_1$-spaces are finitely productive iff $\text\{\bf CC\}(\mathbb \{R\})$ fails. 3. Lindelöf $T_2$-spaces are productive iff $\text\{\bf CC\}(\mathbb \{R\})$ fails and $\text\{\bf BPI\}$, the Boolean prime ideal theorem, holds. 4. Arbitrary products and countable sums of compact $T_1$-spaces are Lindelöf iff $\text\{\bf AC\}$ holds. 5. Lindelöf spaces are countably summable iff $\text\{\bf CC\}$, the axiom of countable choice, holds. 6. Lindelöf spaces are finitely summable iff either $\text\{\bf CC\}$ holds or $\text\{\bf CC\}(\mathbb \{R\})$ fails. 7. Lindelöf $T_2$-spaces are $T_3$ spaces iff $\text\{\bf CC\}(\mathbb \{R\})$ fails. 8. Totally disconnected Lindelöf $T_2$-spaces are zerodimensional iff $\text\{\bf CC\}(\mathbb \{R\})$ fails.},
author = {Herrlich, Horst},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {axiom of choice; axiom of countable choice; Lindelöf space; compact space; product; sum; axiom of choice; axiom of countable choice; Lindelöf space; compact space; product; sum},
language = {eng},
number = {2},
pages = {319-333},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Products of Lindelöf $T_2$-spaces are Lindelöf – in some models of ZF},
url = {http://eudml.org/doc/249001},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Herrlich, Horst
TI - Products of Lindelöf $T_2$-spaces are Lindelöf – in some models of ZF
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 2
SP - 319
EP - 333
AB - The stability of the Lindelöf property under the formation of products and of sums is investigated in ZF (= Zermelo-Fraenkel set theory without AC, the axiom of choice). It is • not surprising that countable summability of the Lindelöf property requires some weak choice principle, • highly surprising, however, that productivity of the Lindelöf property is guaranteed by a drastic failure of AC, • amusing that finite summability of the Lindelöf property takes place if either some weak choice principle holds or if AC fails drastically. Main results: 1. Lindelöf = compact for $T_1$-spaces iff $\text{\bf CC}(\mathbb {R})$, the axiom of countable choice for subsets of the reals, fails. 2. Lindelöf $T_1$-spaces are finitely productive iff $\text{\bf CC}(\mathbb {R})$ fails. 3. Lindelöf $T_2$-spaces are productive iff $\text{\bf CC}(\mathbb {R})$ fails and $\text{\bf BPI}$, the Boolean prime ideal theorem, holds. 4. Arbitrary products and countable sums of compact $T_1$-spaces are Lindelöf iff $\text{\bf AC}$ holds. 5. Lindelöf spaces are countably summable iff $\text{\bf CC}$, the axiom of countable choice, holds. 6. Lindelöf spaces are finitely summable iff either $\text{\bf CC}$ holds or $\text{\bf CC}(\mathbb {R})$ fails. 7. Lindelöf $T_2$-spaces are $T_3$ spaces iff $\text{\bf CC}(\mathbb {R})$ fails. 8. Totally disconnected Lindelöf $T_2$-spaces are zerodimensional iff $\text{\bf CC}(\mathbb {R})$ fails.
LA - eng
KW - axiom of choice; axiom of countable choice; Lindelöf space; compact space; product; sum; axiom of choice; axiom of countable choice; Lindelöf space; compact space; product; sum
UR - http://eudml.org/doc/249001
ER -

References

top
  1. Bentley H.L., Herrlich H., Countable choice and pseudometric spaces, Topology Appl. 85 (1998), 153-164. (1998) Zbl0922.03068MR1617460
  2. Börger R., On powers of a Lindelöf space, preprint, November 2001. 
  3. Brunner N., σ -kompakte Räume, Manuscripta Math. 38 (1982), 375-379. (1982) Zbl0504.54004MR0667922
  4. Brunner N., Lindelöf Räume und Auswahlaxiom, Anz. Österreich. Akad. der Wiss. Math. Nat. Kl. 119 (1982), 161-165. (1982) MR0728812
  5. Brunner N., Spaces of Urelements, II, Rend. Sem. Mat. Univ. Padova 77 (1987), 305-315. (1987) Zbl0668.54014MR0904626
  6. Church A., Alternatives to Zermelo's assumption, Trans. Amer. Math. Soc. 29 (1927), 178-208. (1927) MR1501383
  7. Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  8. Feferman S., Levy A., Independence results in set theory by Cohen's method, Notices Amer. Math. Soc. 10 (1963), 593. (1963) 
  9. Gitik M., All uncountable cardinals can be singular, Israel J. Math. 35 (1980), 61-88. (1980) Zbl0439.03036MR0576462
  10. Good C., Tree I.J., Continuing horrors of topology without choice, Topology Appl. 63 (1995), 79-90. (1995) Zbl0822.54001MR1328621
  11. Gutierres G., Sequential topological conditions without AC, preprint, 2001. 
  12. Herrlich H., Compactness and the axiom of choice, Appl. Categ. Structures 3 (1995), 1-15. (1995) MR1393958
  13. Herrlich H., Keremedis K., On countable products of finite Hausdorff spaces, Math. Logic Quart. 46 (2000), 537-542. (2000) Zbl0959.03033MR1791548
  14. Herrlich H., Strecker G.E., When is Lindelöf?, Comment. Math. Univ. Carolinae 38 (1997), 553-556. (1997) Zbl0938.54008MR1485075
  15. Howard P., Rubin J.E., Consequences of the Axiom of Choice, AMS Math. Surveys and Monographs 59 AMS, Providence, RI, 1998. Zbl0947.03001MR1637107
  16. Jech T.J., The Axiom of Choice, North-Holland, Amsterdam, 1973. Zbl0259.02052MR0396271
  17. Kelley J., The Tychonoff product theorem implies the axiom of choice, Fund. Math. 37 (1950), 75-76. (1950) Zbl0039.28202MR0039982
  18. Keremedis K., Disasters in topology without the axiom of choice, Arch. Math. Logic, 2000, to appear. Zbl1027.03040MR1867681
  19. Keremedis K., Countable disjoint unions in topology and some weak forms of the axiom of choice, Arch. Math. Logic, submitted. 
  20. Keremedis K., Tachtsis E., On Lindelöf metric spaces and weak forms of the axiom of choice, Math. Logic Quart. 46 (2000), 35-44. (2000) Zbl0952.03060MR1736648
  21. Lindelöf E., Sur quelques points de la théorie des ensembles, C.R. Acad. Paris 137 (1903), 697-700. (1903) 
  22. Mycielski J., Steinhaus H., A mathematical axiom contradicting the axiom of choice, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 10 (1962), 1-3. (1962) Zbl0106.00804MR0140430
  23. Rhineghost Y.T., The naturals are Lindelöf iff Ascoli holds, Categorical Perspectives (eds. J. Koslowski and A. Melton), Birkhäuser, 2001. Zbl0983.03039MR1827669
  24. Rubin H., Scott D., Some topological theorems equivalent to the Boolean prime ideal theorem, Bull. Amer. Math. Soc. 60 (1954), 389. (1954) 
  25. Sageev G., An independence result concerning the axiom of choice, Annals Math. Logic 8 (1975), 1-184. (1975) Zbl0306.02060MR0366668
  26. Specker E., Zur Axiomatik der Mengenlehre (Fundierungs- und Auswahlaxiom), Z. Math. Logik Grundlagen Math. 3 (1957), 173-210. (1957) Zbl0079.07605MR0099297
  27. van Douwen E.K., Horrors of topology without AC: a nonnormal orderable space, Proc. Amer. Math. Soc. 95 (1985), 101-105. (1985) Zbl0574.03039MR0796455

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.