Hopf bifurcation from infinity

Marco Sabatini

Rendiconti del Seminario Matematico della Università di Padova (1987)

  • Volume: 78, page 237-253
  • ISSN: 0041-8994

How to cite

top

Sabatini, Marco. "Hopf bifurcation from infinity." Rendiconti del Seminario Matematico della Università di Padova 78 (1987): 237-253. <http://eudml.org/doc/108079>.

@article{Sabatini1987,
author = {Sabatini, Marco},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {second order differential equations; Liénard; Rayleigh},
language = {eng},
pages = {237-253},
publisher = {Seminario Matematico of the University of Padua},
title = {Hopf bifurcation from infinity},
url = {http://eudml.org/doc/108079},
volume = {78},
year = {1987},
}

TY - JOUR
AU - Sabatini, Marco
TI - Hopf bifurcation from infinity
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1987
PB - Seminario Matematico of the University of Padua
VL - 78
SP - 237
EP - 253
LA - eng
KW - second order differential equations; Liénard; Rayleigh
UR - http://eudml.org/doc/108079
ER -

References

top
  1. [1] J. Auslander - P. Seibert, Prolongations and stability in Dynamical Systems, Ann. Inst. Fourier, 14 (1964), pp. 237-267. Zbl0128.31303MR176180
  2. [2] N.P. Bathia - G.P. Szegö, Stability theory of Dynamical systems, Die Grund. der Math. Wiss. in Einz., 161, Springer-Verlag, Berlin (1970). MR289890
  3. [3] M.L. Cartwright - H.P.F. Swinnerton Dyer, Boundedness theorems for some second order differential equations I, Ann. Pol. Math., 29 (1974), pp. 233-258. Zbl0292.34023MR355191
  4. [4] M.L. Cartwright - H.P.F. Swinnerton Dyer, The boundedness of solutions of systems of differential equations, Coll. Math. Soc. J. Bolyai, (M. Farkas ed.), 15, pp. 121-130, North-Holland, Amsterdam (1975). Zbl0361.34028MR473332
  5. [5] L. Cesari, Asymptotic behavior and stability problems in ordinary differential equations, Erg. der Math., 16, Springer-Verlag, Berlin (1963). Zbl0111.08701
  6. [6] J. Dugundji, Topology, Allyn and Bacon, Boston (1971). Zbl0397.54003MR478089
  7. [7] J.R. Graef, On generalized Liénard equation with negative dumping, Jour. Diff. Eq., 12 (1972), pp. 34-62. Zbl0254.34038MR328200
  8. [8] J. Hale - L.T. Magalhaes - W.M. Oliva, An introduction to infinite dimensional dynamical systems. Geometric theory, Applied Math. Sc., 48, Springer-Verlag, Berlin (1984). Zbl0533.58001MR725501
  9. [9] A. Lins - W. De Melo - C.C. Pugh, On Liénard's equation, in Lecture Notes on Math., « Geometry and Topology », (J. Palis, M. Do Carmo ed.), 597, pp. 335-357, Springer-Verlag, Berlin (1977). Zbl0362.34022MR448423
  10. [10] L. Malaguti, Preprint, Univ. of Modena (1986). 
  11. [11] F. Marchetti - P. Negrini - L. Salvadori - M. Scalia, Liapunov direct method in approaching bifurcations problems, Ann. Mat. Pura Appl., (IV) 102 (1976), pp. 211-226. Zbl0332.34047MR445076
  12. [12] G. Sansone - R. Conti, Equazioni differenziali non lineari, Ediz. Cremonese, Roma (1956). Zbl0075.26803MR88607
  13. [13] T. Yoshizawa, Stability theory by Liapunov' second method, The Math. Soc. of Japan, Tokyo (1966). Zbl0144.10802MR208086
  14. [14] ZHANG ZHIFEN (CHANG CHIFEN), Dokl. Akad. Nauk. U.S.S.R., 119 (1958), pp. 659-662. 
  15. [15] Zhang Zhifen, Proof of the uniqueness theorems of limit cycles of generalized Liénard equations, Quad. Ist. Mat. U. Dini, Univ. di Firenze (1985). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.