Periodic solutions of second order hamiltonian systems bifurcating from infinity
Justyna Fura; Sławomir Rybicki
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 3, page 471-490
- ISSN: 0294-1449
Access Full Article
topHow to cite
topFura, Justyna, and Rybicki, Sławomir. "Periodic solutions of second order hamiltonian systems bifurcating from infinity." Annales de l'I.H.P. Analyse non linéaire 24.3 (2007): 471-490. <http://eudml.org/doc/78744>.
@article{Fura2007,
author = {Fura, Justyna, Rybicki, Sławomir},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {autonomous second order Hamiltonian systems; existence and continuation of periodic solutions; degree for SO(2)-equivariant gradient maps},
language = {eng},
number = {3},
pages = {471-490},
publisher = {Elsevier},
title = {Periodic solutions of second order hamiltonian systems bifurcating from infinity},
url = {http://eudml.org/doc/78744},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Fura, Justyna
AU - Rybicki, Sławomir
TI - Periodic solutions of second order hamiltonian systems bifurcating from infinity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 3
SP - 471
EP - 490
LA - eng
KW - autonomous second order Hamiltonian systems; existence and continuation of periodic solutions; degree for SO(2)-equivariant gradient maps
UR - http://eudml.org/doc/78744
ER -
References
top- [1] Adams J.F., Lectures on Lie Groups, W.A. Benjamin, New York, 1969. Zbl0206.31604MR252560
- [2] Ambrosetti A., Branching points for a class of variational operators, J. Anal. Math.76 (1998) 321-335. Zbl0931.47051MR1676975
- [3] Böhme R., Die Lösung der Versweigungsgleichungen für Nichtlineare Eigenwert-Probleme, Math. Z.127 (1972) 105-126. Zbl0254.47082MR312348
- [4] Brown R.F., A Topological Introduction to Nonlinear Analysis, Birkhäuser Boston, Boston, MA, 2004. Zbl1061.47001MR2020421
- [5] Dancer E.N., A new degree for -invariant mappings and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire2 (5) (1985) 473-486. Zbl0579.58022MR817033
- [6] tom Dieck T., Transformation Groups, Walter de Gruyter, Berlin, 1987. Zbl0611.57002MR889050
- [7] Fura J., Ratajczak A., Rybicki S., Existence and continuation of periodic solutions of autonomous Newtonian systems, J. Differential Equations218 (1) (2005) 216-252. Zbl1101.34028MR2174973
- [8] Gȩba K., Degree for gradient equivariant maps and equivariant Conley index, in: Matzeu M., Vignoli A. (Eds.), Topological Nonlinear Analysis, Degree, Singularity and Variations, Progr. Nonlinear Differential Equations Appl., vol. 27, Birkhäuser, 1997, pp. 247-272. Zbl0880.57015
- [9] Glover J.N., Hopf bifurcations at infinity, Nonlinear Anal. TMA13 (12) (1989) 1393-1398. Zbl0705.34042MR1028236
- [10] Ize J., Topological bifurcation, in: Matzeu M., Vignoli A. (Eds.), Topological Nonlinear Analysis, Degree, Singularity and Variations, Progr. Nonlinear Differential Equations Appl., vol. 15, Birkhäuser, Basel, 1995, pp. 341-463. Zbl0899.58010MR1322327
- [11] Le V.K., Schmitt K., Global Bifurcations in Variational Inequalities, Springer-Verlag, New York, 1997. Zbl0876.49008MR1438548
- [12] Ma R., Bifurcation from infinity and multiple solutions for periodic boundary value problems, Nonlinear Anal. TMA42 (1) (2000) 27-39. Zbl0966.34015MR1769250
- [13] Maciejewski A., Radzki W., Rybicki S., Periodic trajectories near degenerate equilibria in the Hénon–Heiles and Yang–Mills Hamiltonian systems, J. Dynam. Differential Equations17 (3) (2005) 475-488. Zbl1080.37069
- [14] Malaguti L., Periodic solutions of the Liénard equation: bifurcation from infinity and nonuniqueness, Rend. Istit. Mat. Univ. Trieste19 (1) (1987) 12-31. Zbl0647.34038MR941090
- [15] Marino A., La biforcazione nel caso variazionale, Conf. Sem. Mat. Univ. Bari132 (1977). Zbl0323.47046MR348570
- [16] Rabier P., Symmetries, topological degree and a theorem of Z.Q. Wang, Rocky Mountain J. Math.24 (3) (1994) 1087-1115. Zbl0819.47076MR1307593
- [17] Radzki W., Degenerate branching points of autonomous Hamiltonian systems, Nonlinear Anal. TMA55 (1–2) (2003) 153-166. Zbl1034.37036
- [18] Radzki W., Rybicki S., Degenerate bifurcation points of periodic solutions of autonomous Hamiltonian systems, J. Differential Equations202 (2) (2004) 284-305. Zbl1076.34042MR2068442
- [19] Rybicki S., -degree for orthogonal maps and its applications to bifurcation theory, Nonlinear Anal. TMA23 (1) (1994) 83-102. Zbl0815.58027MR1288500
- [20] Rybicki S., Applications of degree for -equivariant gradient maps to variational nonlinear problems with -symmetries, Topol. Methods Nonlinear Anal.9 (2) (1997) 383-417. Zbl0891.55003MR1491852
- [21] Rybicki S., Degree for equivariant gradient maps, Milan J. Math.73 (2005) 103-144. Zbl1116.58009MR2175038
- [22] Rybicki S., Bifurcations of solutions of -symmetric nonlinear problems with variational structure, in: Brown R., Furi M., Górniewicz L., Jiang B. (Eds.), Handbook of Topological Fixed Point Theory, Springer, Berlin, 2005, pp. 339-372. Zbl1089.47050MR2171112
- [23] Sabatini M., Hopf bifurcation from infinity, Rend. Sem. Mat. Univ. Padova78 (1987) 237-253. Zbl0644.34037MR934515
- [24] Sabatini M., Successive bifurcations at infinity for second order O.D.E.'s, Qual. Theory Dynam. Syst.3 (2) (2002) 1-17. Zbl1097.34024MR1960715
- [25] Takens F., Some remarks on the Böhme–Berger bifurcation theorem, Math. Z.125 (1972) 359-364. Zbl0237.47032
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.