Periodic solutions of second order hamiltonian systems bifurcating from infinity

Justyna Fura; Sławomir Rybicki

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 3, page 471-490
  • ISSN: 0294-1449

How to cite

top

Fura, Justyna, and Rybicki, Sławomir. "Periodic solutions of second order hamiltonian systems bifurcating from infinity." Annales de l'I.H.P. Analyse non linéaire 24.3 (2007): 471-490. <http://eudml.org/doc/78744>.

@article{Fura2007,
author = {Fura, Justyna, Rybicki, Sławomir},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {autonomous second order Hamiltonian systems; existence and continuation of periodic solutions; degree for SO(2)-equivariant gradient maps},
language = {eng},
number = {3},
pages = {471-490},
publisher = {Elsevier},
title = {Periodic solutions of second order hamiltonian systems bifurcating from infinity},
url = {http://eudml.org/doc/78744},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Fura, Justyna
AU - Rybicki, Sławomir
TI - Periodic solutions of second order hamiltonian systems bifurcating from infinity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 3
SP - 471
EP - 490
LA - eng
KW - autonomous second order Hamiltonian systems; existence and continuation of periodic solutions; degree for SO(2)-equivariant gradient maps
UR - http://eudml.org/doc/78744
ER -

References

top
  1. [1] Adams J.F., Lectures on Lie Groups, W.A. Benjamin, New York, 1969. Zbl0206.31604MR252560
  2. [2] Ambrosetti A., Branching points for a class of variational operators, J. Anal. Math.76 (1998) 321-335. Zbl0931.47051MR1676975
  3. [3] Böhme R., Die Lösung der Versweigungsgleichungen für Nichtlineare Eigenwert-Probleme, Math. Z.127 (1972) 105-126. Zbl0254.47082MR312348
  4. [4] Brown R.F., A Topological Introduction to Nonlinear Analysis, Birkhäuser Boston, Boston, MA, 2004. Zbl1061.47001MR2020421
  5. [5] Dancer E.N., A new degree for SO 2 -invariant mappings and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire2 (5) (1985) 473-486. Zbl0579.58022MR817033
  6. [6] tom Dieck T., Transformation Groups, Walter de Gruyter, Berlin, 1987. Zbl0611.57002MR889050
  7. [7] Fura J., Ratajczak A., Rybicki S., Existence and continuation of periodic solutions of autonomous Newtonian systems, J. Differential Equations218 (1) (2005) 216-252. Zbl1101.34028MR2174973
  8. [8] Gȩba K., Degree for gradient equivariant maps and equivariant Conley index, in: Matzeu M., Vignoli A. (Eds.), Topological Nonlinear Analysis, Degree, Singularity and Variations, Progr. Nonlinear Differential Equations Appl., vol. 27, Birkhäuser, 1997, pp. 247-272. Zbl0880.57015
  9. [9] Glover J.N., Hopf bifurcations at infinity, Nonlinear Anal. TMA13 (12) (1989) 1393-1398. Zbl0705.34042MR1028236
  10. [10] Ize J., Topological bifurcation, in: Matzeu M., Vignoli A. (Eds.), Topological Nonlinear Analysis, Degree, Singularity and Variations, Progr. Nonlinear Differential Equations Appl., vol. 15, Birkhäuser, Basel, 1995, pp. 341-463. Zbl0899.58010MR1322327
  11. [11] Le V.K., Schmitt K., Global Bifurcations in Variational Inequalities, Springer-Verlag, New York, 1997. Zbl0876.49008MR1438548
  12. [12] Ma R., Bifurcation from infinity and multiple solutions for periodic boundary value problems, Nonlinear Anal. TMA42 (1) (2000) 27-39. Zbl0966.34015MR1769250
  13. [13] Maciejewski A., Radzki W., Rybicki S., Periodic trajectories near degenerate equilibria in the Hénon–Heiles and Yang–Mills Hamiltonian systems, J. Dynam. Differential Equations17 (3) (2005) 475-488. Zbl1080.37069
  14. [14] Malaguti L., Periodic solutions of the Liénard equation: bifurcation from infinity and nonuniqueness, Rend. Istit. Mat. Univ. Trieste19 (1) (1987) 12-31. Zbl0647.34038MR941090
  15. [15] Marino A., La biforcazione nel caso variazionale, Conf. Sem. Mat. Univ. Bari132 (1977). Zbl0323.47046MR348570
  16. [16] Rabier P., Symmetries, topological degree and a theorem of Z.Q. Wang, Rocky Mountain J. Math.24 (3) (1994) 1087-1115. Zbl0819.47076MR1307593
  17. [17] Radzki W., Degenerate branching points of autonomous Hamiltonian systems, Nonlinear Anal. TMA55 (1–2) (2003) 153-166. Zbl1034.37036
  18. [18] Radzki W., Rybicki S., Degenerate bifurcation points of periodic solutions of autonomous Hamiltonian systems, J. Differential Equations202 (2) (2004) 284-305. Zbl1076.34042MR2068442
  19. [19] Rybicki S., SO 2 -degree for orthogonal maps and its applications to bifurcation theory, Nonlinear Anal. TMA23 (1) (1994) 83-102. Zbl0815.58027MR1288500
  20. [20] Rybicki S., Applications of degree for SO 2 -equivariant gradient maps to variational nonlinear problems with SO 2 -symmetries, Topol. Methods Nonlinear Anal.9 (2) (1997) 383-417. Zbl0891.55003MR1491852
  21. [21] Rybicki S., Degree for equivariant gradient maps, Milan J. Math.73 (2005) 103-144. Zbl1116.58009MR2175038
  22. [22] Rybicki S., Bifurcations of solutions of SO 2 -symmetric nonlinear problems with variational structure, in: Brown R., Furi M., Górniewicz L., Jiang B. (Eds.), Handbook of Topological Fixed Point Theory, Springer, Berlin, 2005, pp. 339-372. Zbl1089.47050MR2171112
  23. [23] Sabatini M., Hopf bifurcation from infinity, Rend. Sem. Mat. Univ. Padova78 (1987) 237-253. Zbl0644.34037MR934515
  24. [24] Sabatini M., Successive bifurcations at infinity for second order O.D.E.'s, Qual. Theory Dynam. Syst.3 (2) (2002) 1-17. Zbl1097.34024MR1960715
  25. [25] Takens F., Some remarks on the Böhme–Berger bifurcation theorem, Math. Z.125 (1972) 359-364. Zbl0237.47032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.