Auflösbare Gruppen mit endlichem Exponenten, deren Untergruppen alle subnormal sind. - II

Walter Möhres

Rendiconti del Seminario Matematico della Università di Padova (1989)

  • Volume: 81, page 269-287
  • ISSN: 0041-8994

How to cite

top

Möhres, Walter. "Auflösbare Gruppen mit endlichem Exponenten, deren Untergruppen alle subnormal sind. - II." Rendiconti del Seminario Matematico della Università di Padova 81 (1989): 269-287. <http://eudml.org/doc/108143>.

@article{Möhres1989,
author = {Möhres, Walter},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {nilpotent groups; subnormal subgroups; groups of finite exponent; soluble groups of finite exponent; extensions of elementary abelian p-groups},
language = {ger},
pages = {269-287},
publisher = {Seminario Matematico of the University of Padua},
title = {Auflösbare Gruppen mit endlichem Exponenten, deren Untergruppen alle subnormal sind. - II},
url = {http://eudml.org/doc/108143},
volume = {81},
year = {1989},
}

TY - JOUR
AU - Möhres, Walter
TI - Auflösbare Gruppen mit endlichem Exponenten, deren Untergruppen alle subnormal sind. - II
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1989
PB - Seminario Matematico of the University of Padua
VL - 81
SP - 269
EP - 287
LA - ger
KW - nilpotent groups; subnormal subgroups; groups of finite exponent; soluble groups of finite exponent; extensions of elementary abelian p-groups
UR - http://eudml.org/doc/108143
ER -

References

top
  1. [1] H. Heineken - I.J. Mohamed, Non-nilpotent groups with normalizer condition, Proc. Sec. Internat. Conf. Theory of Groups 1973, Lecture Notes in Mathematics, 372, pp. 357-360, Springer-Verlag, Berlin, 1974. Zbl0286.20033MR357611
  2. [2] W. Möhres, Auflösbare Gruppen mit endlichem Exponenten, deren Untergruppen alle subnormat sind - I, Rend. Sem. Mat. Univ. Padova, 81 (1989), pp. 255-268. Zbl0695.20021MR1020199
  3. [3] B.H. Neumann, Groups covered by permutable subsets, J. London Math. Soc., 29 (1954), pp. 236-248. Zbl0055.01604MR62122
  4. [4] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York-Heidelberg -Berlin (1982). Zbl0483.20001MR648604
  5. [5] J.E. Roseblade, On groups in which every subgroup is subnormal, J. Algebra, 2 (1965), pp. 402-412. Zbl0135.04901MR193147

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.