Karp's interpolation theorem for some classes of infinitary languages
Rendiconti del Seminario Matematico della Università di Padova (1989)
- Volume: 82, page 9-23
- ISSN: 0041-8994
Access Full Article
topHow to cite
topBaratella, Stefano. "Karp's interpolation theorem for some classes of infinitary languages." Rendiconti del Seminario Matematico della Università di Padova 82 (1989): 9-23. <http://eudml.org/doc/108167>.
@article{Baratella1989,
author = {Baratella, Stefano},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {consistency property; infinitary languages; weak interpolation theorem; strong interpolation theorem; GCH},
language = {eng},
pages = {9-23},
publisher = {Seminario Matematico of the University of Padua},
title = {Karp's interpolation theorem for some classes of infinitary languages},
url = {http://eudml.org/doc/108167},
volume = {82},
year = {1989},
}
TY - JOUR
AU - Baratella, Stefano
TI - Karp's interpolation theorem for some classes of infinitary languages
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1989
PB - Seminario Matematico of the University of Padua
VL - 82
SP - 9
EP - 23
LA - eng
KW - consistency property; infinitary languages; weak interpolation theorem; strong interpolation theorem; GCH
UR - http://eudml.org/doc/108167
ER -
References
top- [1] C. Chang, Two Interpolation Theorems, Proceedings of the Rome Conference on Model Theory, Symposia Mathematica, vol. V, pp. 5-19, Academic Press, New York, 1970. Zbl0222.02008MR282819
- [2] E. Cunningham, Chain models for infinite quantifier languages, Ph. D. Thesis, University of Maryland, 1974.
- [3] R. Ferro, Interpolation theorems for L2+kk, JSL, 43 (1978), pp. 535-549. Zbl0397.03019MR503791
- [4] R. Ferro, Consistency property and model existence theorem for second order negative languages with conjunctions and quantifications over sets of cardinality smaller than a strong limit cardinal of denumerable cofinality, Rend. Sem. Mat. Univ. Padova, 55 (1978), pp. 121-141. Zbl0365.02006MR460065
- [5] R. Ferro, Seq-consistency property and Cunningham's interpolation theorems, Rend. Sem. Mat. Univ. Padova, 75 (1983), pp. 133-145. Zbl0534.03014MR742115
- [6] J. Gregory, Beth definability in infinitary languages, ISL, 39 (1974), pp. 22-26. Zbl0327.02014MR354307
- [7] C. Karp, Infinite quantifier languages and ω-chains of models, Proceedings of the Tarsky Symposium, pp. 225-232, Amer. Math. Soc., Providence, 1974. Zbl0308.02016
- [8] C. Karp, Languages with Expressions of Infinite Length, North Holland, Amsterdam, 1964. Zbl0127.00901MR176910
- [9] H.J. Keisler, Model Theory for Infinitary Logic, North-Holland, Amsterdam, 1971. Zbl0222.02064MR344115
- [10] J.I. Malitz, Infinitary analogs of theorems from first-order model theory, JSL, 36 (1971), pp. 216-228. Zbl0232.02037MR290943
- [11] D. Mundici, Compactness, interpolation andFriedman's third problem, Ann. Math. Logic, 22 (1982), pp. 197-211. Zbl0495.03020MR667227
- [12] G. Takeuti, A Determinate Logic, Syntax and Semantics of Infinitary Languages, pp. 237-264, Springer-Verlag, Berlin-New York, 1968. Zbl0182.32501
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.