Karp's interpolation theorem for some classes of infinitary languages

Stefano Baratella

Rendiconti del Seminario Matematico della Università di Padova (1989)

  • Volume: 82, page 9-23
  • ISSN: 0041-8994

How to cite

top

Baratella, Stefano. "Karp's interpolation theorem for some classes of infinitary languages." Rendiconti del Seminario Matematico della Università di Padova 82 (1989): 9-23. <http://eudml.org/doc/108167>.

@article{Baratella1989,
author = {Baratella, Stefano},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {consistency property; infinitary languages; weak interpolation theorem; strong interpolation theorem; GCH},
language = {eng},
pages = {9-23},
publisher = {Seminario Matematico of the University of Padua},
title = {Karp's interpolation theorem for some classes of infinitary languages},
url = {http://eudml.org/doc/108167},
volume = {82},
year = {1989},
}

TY - JOUR
AU - Baratella, Stefano
TI - Karp's interpolation theorem for some classes of infinitary languages
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1989
PB - Seminario Matematico of the University of Padua
VL - 82
SP - 9
EP - 23
LA - eng
KW - consistency property; infinitary languages; weak interpolation theorem; strong interpolation theorem; GCH
UR - http://eudml.org/doc/108167
ER -

References

top
  1. [1] C. Chang, Two Interpolation Theorems, Proceedings of the Rome Conference on Model Theory, Symposia Mathematica, vol. V, pp. 5-19, Academic Press, New York, 1970. Zbl0222.02008MR282819
  2. [2] E. Cunningham, Chain models for infinite quantifier languages, Ph. D. Thesis, University of Maryland, 1974. 
  3. [3] R. Ferro, Interpolation theorems for L2+kk, JSL, 43 (1978), pp. 535-549. Zbl0397.03019MR503791
  4. [4] R. Ferro, Consistency property and model existence theorem for second order negative languages with conjunctions and quantifications over sets of cardinality smaller than a strong limit cardinal of denumerable cofinality, Rend. Sem. Mat. Univ. Padova, 55 (1978), pp. 121-141. Zbl0365.02006MR460065
  5. [5] R. Ferro, Seq-consistency property and Cunningham's interpolation theorems, Rend. Sem. Mat. Univ. Padova, 75 (1983), pp. 133-145. Zbl0534.03014MR742115
  6. [6] J. Gregory, Beth definability in infinitary languages, ISL, 39 (1974), pp. 22-26. Zbl0327.02014MR354307
  7. [7] C. Karp, Infinite quantifier languages and ω-chains of models, Proceedings of the Tarsky Symposium, pp. 225-232, Amer. Math. Soc., Providence, 1974. Zbl0308.02016
  8. [8] C. Karp, Languages with Expressions of Infinite Length, North Holland, Amsterdam, 1964. Zbl0127.00901MR176910
  9. [9] H.J. Keisler, Model Theory for Infinitary Logic, North-Holland, Amsterdam, 1971. Zbl0222.02064MR344115
  10. [10] J.I. Malitz, Infinitary analogs of theorems from first-order model theory, JSL, 36 (1971), pp. 216-228. Zbl0232.02037MR290943
  11. [11] D. Mundici, Compactness, interpolation andFriedman's third problem, Ann. Math. Logic, 22 (1982), pp. 197-211. Zbl0495.03020MR667227
  12. [12] G. Takeuti, A Determinate Logic, Syntax and Semantics of Infinitary Languages, pp. 237-264, Springer-Verlag, Berlin-New York, 1968. Zbl0182.32501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.