Periodic solutions for a class of autonomous hamiltonian systems

H. Beirão da Veiga

Rendiconti del Seminario Matematico della Università di Padova (1990)

  • Volume: 83, page 183-192
  • ISSN: 0041-8994

How to cite

top

Beirão da Veiga, H.. "Periodic solutions for a class of autonomous hamiltonian systems." Rendiconti del Seminario Matematico della Università di Padova 83 (1990): 183-192. <http://eudml.org/doc/108176>.

@article{BeirãodaVeiga1990,
author = {Beirão da Veiga, H.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Hamiltonian system},
language = {eng},
pages = {183-192},
publisher = {Seminario Matematico of the University of Padua},
title = {Periodic solutions for a class of autonomous hamiltonian systems},
url = {http://eudml.org/doc/108176},
volume = {83},
year = {1990},
}

TY - JOUR
AU - Beirão da Veiga, H.
TI - Periodic solutions for a class of autonomous hamiltonian systems
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1990
PB - Seminario Matematico of the University of Padua
VL - 83
SP - 183
EP - 192
LA - eng
KW - Hamiltonian system
UR - http://eudml.org/doc/108176
ER -

References

top
  1. [B] V. Benci, Some critical point theorems and applications, Comm. Pure Appl. Math., 33 (1980), pp. 147-172. Zbl0472.58009MR562548
  2. [BC] H. Brezis - J.M. Coron, Periodic solutions of nonlinear wave equations and Hamiltonian systems, Amer. J. Math., 103 (1981), pp. 559-570. Zbl0462.35004MR618324
  3. [C1] F. Clarke, Periodic solutions of Hamiltonian inclusions, J. Diff. Eq., 40 (1980), pp. 1-6. Zbl0461.34030MR614215
  4. [C2] F. Clarke, Periodic solutions of Hamilton's equations and local minima of the dual action, Trans. Amer. Math. Soc., 287 (January 1985), pp. 239-251. Zbl0596.49030MR766217
  5. [CE] F. Clarke - I. Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math., 33 (1980), pp. 103-116. Zbl0403.70016MR562546
  6. [E] I. Ekeland, Periodic solutions of Hamiltonian equations and a theorem of P. Rabinowitz, J. Diff. Eq., 34 (1979), pp. 523-534. Zbl0446.70019MR555325
  7. [FHR] E.R. Fadell - S. Husseini - P.H. Rabinowitz, Borsuk-Ulam theorems for arbitrary S1 actions and applications, Trans. Amer. Math. Soc., 274 (1982), pp. 345-360. Zbl0506.58010MR670937
  8. [R1] P.H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), pp. 157-186. Zbl0358.70014MR467823
  9. [R2] P.H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations, Ann. Sc. Norm. Sup. Pisa, 2 (1978), pp. 215-233. Zbl0375.35026MR488128
  10. [R3] P.H. Rabinowitz, Periodic solutions of Hamiltonian system: A survey, SIAM J. Math. Anal., 13 (1982), pp. 343-352. Zbl0521.58028MR653462
  11. [R4] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Lecture Notes, N. 65. Zbl0609.58002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.