A class of Hamiltonian systems with increasing periods.
Page 1 Next
Renate Schaaf (1985)
Journal für die reine und angewandte Mathematik
Knill, Oliver (1997)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Albu, I. D., Opriş, D. (1999)
Novi Sad Journal of Mathematics
Jorba, Àngel (1999)
Experimental Mathematics
Enrico Massa, Stefano Vignolo (2003)
Extracta Mathematicae
Robert Krawczyk (2014)
Banach Center Publications
In this work we will be concerned with the existence of almost homoclinic solutions for a Newtonian system , where t ∈ ℝ, q ∈ ℝⁿ. It is assumed that a potential V: ℝ × ℝⁿ → ℝ is C¹-smooth and its gradient map is bounded with respect to t. Moreover, a forcing term f: ℝ → ℝⁿ is continuous, bounded and square integrable. We will show that the approximative scheme due to J. Janczewska (see [J2]) for a time periodic potential extends to our case.
P. Lochak, A. Porzio (1989)
Annales de l'I.H.P. Physique théorique
J. Gomis, J. A. Lobo, A. Poch, J. M. Pons (1984)
Annales de l'I.H.P. Physique théorique
Vittorio Coti Zelati, Ivar Ekeland, Eric Séré (1990)
Mathematische Annalen
W.W. Symes (1981)
Inventiones mathematicae
J.J. Duistermaat, G.J. Heckman (1983)
Inventiones mathematicae
Keneth R. Meyer (1975)
Revista colombiana de matematicas
Paweł Urbański (2003)
Banach Center Publications
An affine Cartan calculus is developed. The concepts of special affine bundles and special affine duality are introduced. The canonical isomorphisms, fundamental for Lagrangian and Hamiltonian formulations of the dynamics in the affine setting are proved.
Jan Chrastina (1982)
Archivum Mathematicum
Jan Chrastina (1983)
Archivum Mathematicum
Jan Chrastina (1987)
Archivum Mathematicum
Salem Mathlouthi (1987)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Xia, Zhihong (1998)
Documenta Mathematica
Ljubomir Gavrilov, Mohammed Ouazzani-Jamil, Régis Caboz (1993)
Annales scientifiques de l'École Normale Supérieure
Pierre Cartigny (1984)
Publications du Département de mathématiques (Lyon)
Page 1 Next