Stationary spatially periodic compressible flows at high mach number
Rendiconti del Seminario Matematico della Università di Padova (1990)
- Volume: 84, page 201-215
- ISSN: 0041-8994
Access Full Article
topHow to cite
topBoldrini, José Luiz. "Stationary spatially periodic compressible flows at high mach number." Rendiconti del Seminario Matematico della Università di Padova 84 (1990): 201-215. <http://eudml.org/doc/108197>.
@article{Boldrini1990,
author = {Boldrini, José Luiz},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {steady spatially periodic solutions; Navier-Stokes equations; compressible flow; high Mach numbers; linearized problem},
language = {eng},
pages = {201-215},
publisher = {Seminario Matematico of the University of Padua},
title = {Stationary spatially periodic compressible flows at high mach number},
url = {http://eudml.org/doc/108197},
volume = {84},
year = {1990},
}
TY - JOUR
AU - Boldrini, José Luiz
TI - Stationary spatially periodic compressible flows at high mach number
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1990
PB - Seminario Matematico of the University of Padua
VL - 84
SP - 201
EP - 215
LA - eng
KW - steady spatially periodic solutions; Navier-Stokes equations; compressible flow; high Mach numbers; linearized problem
UR - http://eudml.org/doc/108197
ER -
References
top- [1] H. Beirão Da Veiga, On a stationary transport equation, Ann. Univ. Ferrara, 32 (1986), pp. 79-91. Zbl0641.35006MR901589
- [2] H. Beirão Da Veiga, Stationary motion and incompressible limit for compressible viscous fluids, Houston J. Math., 13, 4 (1987), pp. 527-544. Zbl0663.76066MR929289
- [3] H. Beirão Da Veiga, Existence results in Sobolev spaces for a stationary transport equation, Ricerche di Matematica (Napoli), (Volume in honor of Prof. C. Miranda), Suppl. 36 (1987), pp. 173-184. Zbl0691.35087MR956025
- [4] M. Padula, Existence and uniqueness for viscous steady compressible motions, Arch. Rational Mech. Anal., 97 (1987), pp. 89-102. Zbl0644.76086MR860302
- [5] J. Serrin, Mathematical principles of classical fluid mechanics, in Handbuch der Physik, Bd. VIII/1, Springer-Verlag, Berlin, Gottingen, Heidelberg, 1959. MR108116
- [6] R. Temam, Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, 1983. Zbl0833.35110MR764933
- [7] A. Valli, On the existence of stationary solutions to compressible Navier-Stokes equations, Ann. Inst. Henry Poincaré (Analyse non linéaire), 4, 1 (1987), pp. 99-113. Zbl0627.76080MR877992
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.