On the existence of stationary solutions to compressible Navier-Stokes equations

Alberto Valli

Annales de l'I.H.P. Analyse non linéaire (1987)

  • Volume: 4, Issue: 1, page 99-113
  • ISSN: 0294-1449

How to cite

top

Valli, Alberto. "On the existence of stationary solutions to compressible Navier-Stokes equations." Annales de l'I.H.P. Analyse non linéaire 4.1 (1987): 99-113. <http://eudml.org/doc/78126>.

@article{Valli1987,
author = {Valli, Alberto},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {compressible forms of the Navier-Stokes equations; bounded domain; homogeneous boundary conditions; linearization; Schauder fixed point theorem},
language = {eng},
number = {1},
pages = {99-113},
publisher = {Gauthier-Villars},
title = {On the existence of stationary solutions to compressible Navier-Stokes equations},
url = {http://eudml.org/doc/78126},
volume = {4},
year = {1987},
}

TY - JOUR
AU - Valli, Alberto
TI - On the existence of stationary solutions to compressible Navier-Stokes equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1987
PB - Gauthier-Villars
VL - 4
IS - 1
SP - 99
EP - 113
LA - eng
KW - compressible forms of the Navier-Stokes equations; bounded domain; homogeneous boundary conditions; linearization; Schauder fixed point theorem
UR - http://eudml.org/doc/78126
ER -

References

top
  1. [1] H. Beirão da veiga, Stationary motions and incompressible limit for compressible viscous fluids, MRC Technical Summary Report, n° 28831985 ; Houston J. Math., to appear. Zbl0663.76066MR929289
  2. [2] K.O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math., t. 11, 1958, p. 333-418. Zbl0083.31802MR100718
  3. [3] P.D. Lax, R.S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure Appl. Math., t. 13, 1960, p. 427-455. Zbl0094.07502MR118949
  4. [4] A. Matsumura, T. Nishida, Initial boundary value problems for the equations of motion of general fluids, in Computing methods in applied sciences and engineering, V, ed. R. Glowinski, J. L. Lions, North-Holland Publishing Company, Amsterdam, New York, Oxford, 1982. Zbl0505.76083MR784652
  5. [5] M. Padula, Existence and uniqueness for viscous steady compressible motions, Arch. Rational Mech. Anal., to appear. Zbl0644.76086MR860302
  6. [6] J. Serrin, Mathematical principles of classicalfluid mechanics, in Handbuch der Physik, Bd. VIII/1, Springer Verlag, Berlin, Göttingen, Heidelberg, 1959. MR108116
  7. [7] M. Spivak, A comprehensive introduction to differential geometry, t. 4, Publish or Perish, Inc., Boston, 1975. Zbl0306.53002
  8. [8] R. Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland Publishing Company, Amsterdam, New York, Oxford, 1977. Zbl0383.35057MR609732
  9. [9] A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa, 4, t. 10, 1983, p. 607-647. Zbl0542.35062MR753158
  10. [10] A. Valli, W.M. Zajaczkowski, Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys., t. 103, 1986, p. 259-296. Zbl0611.76082MR826865

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.