On the existence of stationary solutions to compressible Navier-Stokes equations
Annales de l'I.H.P. Analyse non linéaire (1987)
- Volume: 4, Issue: 1, page 99-113
- ISSN: 0294-1449
Access Full Article
topHow to cite
topValli, Alberto. "On the existence of stationary solutions to compressible Navier-Stokes equations." Annales de l'I.H.P. Analyse non linéaire 4.1 (1987): 99-113. <http://eudml.org/doc/78126>.
@article{Valli1987,
author = {Valli, Alberto},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {compressible forms of the Navier-Stokes equations; bounded domain; homogeneous boundary conditions; linearization; Schauder fixed point theorem},
language = {eng},
number = {1},
pages = {99-113},
publisher = {Gauthier-Villars},
title = {On the existence of stationary solutions to compressible Navier-Stokes equations},
url = {http://eudml.org/doc/78126},
volume = {4},
year = {1987},
}
TY - JOUR
AU - Valli, Alberto
TI - On the existence of stationary solutions to compressible Navier-Stokes equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1987
PB - Gauthier-Villars
VL - 4
IS - 1
SP - 99
EP - 113
LA - eng
KW - compressible forms of the Navier-Stokes equations; bounded domain; homogeneous boundary conditions; linearization; Schauder fixed point theorem
UR - http://eudml.org/doc/78126
ER -
References
top- [1] H. Beirão da veiga, Stationary motions and incompressible limit for compressible viscous fluids, MRC Technical Summary Report, n° 28831985 ; Houston J. Math., to appear. Zbl0663.76066MR929289
- [2] K.O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math., t. 11, 1958, p. 333-418. Zbl0083.31802MR100718
- [3] P.D. Lax, R.S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure Appl. Math., t. 13, 1960, p. 427-455. Zbl0094.07502MR118949
- [4] A. Matsumura, T. Nishida, Initial boundary value problems for the equations of motion of general fluids, in Computing methods in applied sciences and engineering, V, ed. R. Glowinski, J. L. Lions, North-Holland Publishing Company, Amsterdam, New York, Oxford, 1982. Zbl0505.76083MR784652
- [5] M. Padula, Existence and uniqueness for viscous steady compressible motions, Arch. Rational Mech. Anal., to appear. Zbl0644.76086MR860302
- [6] J. Serrin, Mathematical principles of classicalfluid mechanics, in Handbuch der Physik, Bd. VIII/1, Springer Verlag, Berlin, Göttingen, Heidelberg, 1959. MR108116
- [7] M. Spivak, A comprehensive introduction to differential geometry, t. 4, Publish or Perish, Inc., Boston, 1975. Zbl0306.53002
- [8] R. Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland Publishing Company, Amsterdam, New York, Oxford, 1977. Zbl0383.35057MR609732
- [9] A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa, 4, t. 10, 1983, p. 607-647. Zbl0542.35062MR753158
- [10] A. Valli, W.M. Zajaczkowski, Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys., t. 103, 1986, p. 259-296. Zbl0611.76082MR826865
Citations in EuDML Documents
top- José Luiz Boldrini, Stationary spatially periodic compressible flows at high mach number
- Patrick Dutto, Jean-Luc Impagliazzo, Antonin Novotny, Schauder estimates for steady compressible Navier-Stokes equations in bounded domains
- Antonín Novotný, Some remarks to the compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.