Some remarks on time-dependent evolution systems in the hyperbolic case

Silvano Delladio

Rendiconti del Seminario Matematico della Università di Padova (1990)

  • Volume: 84, page 255-261
  • ISSN: 0041-8994

How to cite

top

Delladio, Silvano. "Some remarks on time-dependent evolution systems in the hyperbolic case." Rendiconti del Seminario Matematico della Università di Padova 84 (1990): 255-261. <http://eudml.org/doc/108202>.

@article{Delladio1990,
author = {Delladio, Silvano},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {regularity of evolution operator; time-dependent Cauchy problem},
language = {eng},
pages = {255-261},
publisher = {Seminario Matematico of the University of Padua},
title = {Some remarks on time-dependent evolution systems in the hyperbolic case},
url = {http://eudml.org/doc/108202},
volume = {84},
year = {1990},
}

TY - JOUR
AU - Delladio, Silvano
TI - Some remarks on time-dependent evolution systems in the hyperbolic case
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1990
PB - Seminario Matematico of the University of Padua
VL - 84
SP - 255
EP - 261
LA - eng
KW - regularity of evolution operator; time-dependent Cauchy problem
UR - http://eudml.org/doc/108202
ER -

References

top
  1. [1] H. Beirão Da Veiga, Boundary value problem for a class of first order partial differential equations in Sobolev spaces and applications to Euler flow, Rend. Sem. Univ. Padova, 79 (1988), pp. 247-273. Zbl0709.35082MR964034
  2. [2] G. Da Prato - M. Iannelli, On a method for studying abstract evolution equations in the hyperbolic case, Comm. Partial Diff. Eqs., 1 (1976), pp. 585-608. Zbl0358.34063MR442750
  3. [3] G. Da Prato, Equazioni di evoluzione in spazi di Banach, UTM28 (1978), Univ. Trento. 
  4. [4] J.R. Dorroh, A simplified proof of a theorem of Kato on linear evolution equations, J. Math. Soc. Japan, 27 (1975), pp. 474-478. Zbl0297.47037MR380504
  5. [5] T. Kato, Linear evolution equations of « hyperbolic » type, J. Fac. Sc. Univ. Tokyo, 25 (1970), pp. 241-258. Zbl0222.47011MR279626
  6. [6] T. Kato, Linear evolution equations of « hyperbolic » type II, J. Math, Soc. Japan, 25 (1973), pp. 648-666. Zbl0262.34048MR326483
  7. [7] T. Kato, Linear and quasi-linear equations of evolution of hyperbolic type, in: Hyperbolicity, Corso C.I.M.E., II Cielo1976. Zbl0456.35052
  8. [8] T. Kato, On the Kortweg-De Vries equation, Manuscripta Math., 28 (1979), pp. 89-99. Zbl0415.35070
  9. [9] T. Kato, Abstract differential equations and non linear mixed problems, Lezioni Fermiane - Scuola Normale Superiore, Pisa. Zbl0648.35001
  10. [10] A. Pazy, Semigroups of Linear Operators and Applications to Partial, Differential Equations, Springer-Verlag, Berlin (1983). Zbl0516.47023MR710486

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.