Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow
Rendiconti del Seminario Matematico della Università di Padova (1988)
- Volume: 79, page 247-273
- ISSN: 0041-8994
Access Full Article
topHow to cite
topBeirão da Veiga, H.. "Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow." Rendiconti del Seminario Matematico della Università di Padova 79 (1988): 247-273. <http://eudml.org/doc/108099>.
@article{BeirãodaVeiga1988,
author = {Beirão da Veiga, H.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Euler flow; Cauchy problems; Cauchy-Dirichlet problems; stationary problem; unique solvability; evolution problem},
language = {eng},
pages = {247-273},
publisher = {Seminario Matematico of the University of Padua},
title = {Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow},
url = {http://eudml.org/doc/108099},
volume = {79},
year = {1988},
}
TY - JOUR
AU - Beirão da Veiga, H.
TI - Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1988
PB - Seminario Matematico of the University of Padua
VL - 79
SP - 247
EP - 273
LA - eng
KW - Euler flow; Cauchy problems; Cauchy-Dirichlet problems; stationary problem; unique solvability; evolution problem
UR - http://eudml.org/doc/108099
ER -
References
top- [1] C. Bardos - D. BREZIS - H. BREZIS, Perturbations singulières et prolongements maximaux d'opérateurs positifs, Arch. Rat. Mech. Analysis, 53 (1973), pp. 69-100. Zbl0281.47028MR348247
- [2] C. Bardos - J. RAUCH, Maximal positive boundary value problems as limits of singular perturbation problems, Trans. Amer. Math. Soc., 270 (1982), pp. 377-408. Zbl0485.35010MR645322
- [3] H. Beirão Da Veiga, On an Euler type equation in Hydrodynamics, Ann. Mat. Pura Appl., 125 (1980), pp. 279-295. Zbl0576.76010MR605211
- [4] H. Beirão Da Veiga - A. Valli, Existence of C∞ solutions of the Euler equations for non-homogeneous fluids, Comm. Partial Diff. Eq., 5 (1980), pp. 95-107. Zbl0437.35059
- [5] H. Beirão Da Veiga, Homogeneous and non-homogeneous boundary value problems for first order linear hyperbolic systems arising in fluid mechanics, Comm. in Partial Differential Equations, part I: 7 (1982), pp. 1135-1149; part II: 8 (1983), pp. 407-432. Zbl0503.35052
- [6] H. Beirão Da Veiga, An Lp-theory for the n-dimensional, stationary, compressible, Navier-Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions, Comm. Math. Phys., 109 (1987), pp. 229-248. Zbl0621.76074MR880415
- [7] H. Beirão Da Veiga, On a stationary transport equation, Ann. Univ. Ferrara, 32 (1986), pp. 79-91. Zbl0641.35006MR901589
- [8] H. Beirão Da Veiga, Existence results in Sobolev spaces for a stationary transport equation, U.T.M. 203, June 1986, Univ. Trento, to appear in the volume dedicated by « Ricerche di Matematica », to the memory of Professor C. Miranda. Zbl0691.35087MR956025
- [9] H. Beirão Da Veiga, Kato's perturbation theory and well-posedness for the Euler equations in bounded domains, Arch. Rat. Mech. Anal., to appear. Zbl0672.35044
- [10] J.P. Bourguignon - H. Brezis, Remarks on the Euler equation, J. Funct. Analysis, 15 (1974), pp. 341-363. Zbl0279.58005MR344713
- [11] D.G. Ebin - J. E. MARSDEN, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92 (1970), pp. 102-163. Zbl0211.57401MR271984
- [12] K.O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math., 11 (1958), pp. 333-418. Zbl0083.31802MR100718
- [13] D. Fujiwara - H. Morimoto, An Lr-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, 24 (1977), pp. 685-700. Zbl0386.35038MR492980
- [14] T. Kato, Linear evolution equations of « hyperbolic » type, J. Fac. Sci. Univ. Tokyo, 17 (1970), pp. 241-258. Zbl0222.47011MR279626
- [15] T. Kato, Linear evolution equations of « hyperbolic » type II, J. Math. Soc. Japan, 25 (1973), pp. 648-666. Zbl0262.34048MR326483
- [16] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in « Spectral theory and differential equations », Lecture Notes in Mathematics, vol. 448, Springer-Verlag (1975). Zbl0315.35077MR407477
- [17] T. Kato - C. Y. LAI, Nonlinear evolution equations and the Euler flow, J. Funct. Analysis, 56 (1984), pp. 15-28. Zbl0545.76007MR735703
- [18] R.V. Kohn - B.D. Lowe, A variational method for parameter identification, to appear. Zbl0636.65127MR934704
- [19] P.D. Lax - R.S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure Appl. Math., 13 (1960), pp. 427-455. Zbl0094.07502MR118949
- [20] A. Majda - S. Osher, Initial boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28 (1975), pp. 607-675. Zbl0314.35061MR410107
- [21] J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. Amer. Math. Soc., 291 (1985), pp. 167-187. Zbl0549.35099MR797053
- [22] J. Rauch - F. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc., 189 (1974), pp. 303-318. Zbl0282.35014MR340832
- [23] S. Schochet, Singular limits in bounded domains for quasilinear symmetric hyperbolic systems having a vorticity equation, to appear. Zbl0633.35047MR891336
- [24] R. Temam, On the Euler equations of incompressible perfect fluids, J. Funct. Analysis, 20 (1975), pp. 32-43. Zbl0309.35061
- [25] H. Beirão da Veiga, An well-posedness theorem for nonhomogeneous inviscid fluids via a perturbation theorem, to appear. Zbl0682.35012
Citations in EuDML Documents
top- Silvano Delladio, Some remarks on time-dependent evolution systems in the hyperbolic case
- Paolo Secchi, On the equations of ideal incompressible magneto-hydrodynamics
- Rachid Benabidallah, Lynda Taleb, Hisao Fujita Yashima, Existence d'une solution stationnaire d'un système d'équations d'un fluide visqueux compressible et calorifère modélisant la convection
- Mariarosaria Padula, On the exterior steady problem for the equations of a viscous isothermal gas
- Emanuela Casella, Paola Trebeschi, A global existence result in Sobolev spaces for MHD system in the half-plane
- Antonín Novotný, About steady transport equation I – -approach in domains with smooth boundaries
- Patrick Dutto, Jean-Luc Impagliazzo, Antonin Novotny, Schauder estimates for steady compressible Navier-Stokes equations in bounded domains
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.