Carriers of torsion-free groups

R. S. Pierce; C. I. Vinsonhaler

Rendiconti del Seminario Matematico della Università di Padova (1990)

  • Volume: 84, page 263-281
  • ISSN: 0041-8994

How to cite


Pierce, R. S., and Vinsonhaler, C. I.. "Carriers of torsion-free groups." Rendiconti del Seminario Matematico della Università di Padova 84 (1990): 263-281. <>.

author = {Pierce, R. S., Vinsonhaler, C. I.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {carrier; torsion-free abelian group; subgroups of algebraic number fields; quasi-endomorphism ring; carriers of groups; carriers of rings; Galois group},
language = {eng},
pages = {263-281},
publisher = {Seminario Matematico of the University of Padua},
title = {Carriers of torsion-free groups},
url = {},
volume = {84},
year = {1990},

AU - Pierce, R. S.
AU - Vinsonhaler, C. I.
TI - Carriers of torsion-free groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1990
PB - Seminario Matematico of the University of Padua
VL - 84
SP - 263
EP - 281
LA - eng
KW - carrier; torsion-free abelian group; subgroups of algebraic number fields; quasi-endomorphism ring; carriers of groups; carriers of rings; Galois group
UR -
ER -


  1. [A] D.M. Arnold, Finite rank torsion free abelian groups and rings, Lecture Notes in Mathematics, 931, Springer-verlag, Berlin, Heidelberg, New York, 1982. Zbl0493.20034MR665251
  2. [A-M] M.F. Atiyah - I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, 1969. Zbl0175.03601MR242802
  3. [A-P-R-V-W] D.M. Arnold - R.S. Pierce - J.D. Reid - C.I. Vinsonhaler- W.J. Wickless, Torsion free abelian groups of finite rank projective as modules over their endomorphism rings, Jour. Alg., 71 (1981), pp. 1-10. Zbl0464.20039MR627421
  4. [B1] M.C.R. Butler, On locally free torsion-free rings of finite rank, J. Lond. Math. Soc., 43 (1968), pp. 297-300. Zbl0155.07202MR225878
  5. [B2] M.C.R. Butler, A Galois-theoretic description of certain quasi-endomorphism rings, Symposia Mathematica, 13 (1974), pp. 143-151. Zbl0312.16026MR357514
  6. [B-S] R.A. Bowshell - P. Schultz, Unital rings whose additive endomorphisms commute, Math. Ann., 228 (1977), pp. 197-214. Zbl0336.20040MR498691
  7. [C] A.L.S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. Lond. Math. Soc., (3), 13 (1963), pp. 687-710. Zbl0116.02403MR153743
  8. [D-V-M] M. Dugas - A. Mader - C.I. Vinsonhaler, Large E-rings exist, J. Algebra, 108 (1987), pp. 88-101. Zbl0616.20026MR887193
  9. [J] N. Jacobson, Lectures in Abstract Algebra, vol. III, Von Nostrand, Princeton, 1964. Zbl0124.27002
  10. [K] G. KolettisJr., Homogeneously decomposable modutes, Studies on Abelian Groups, Paris (1968), pp. 223-238. Zbl0213.30802MR244228
  11. [M-V] A. Mader - C.I. Vinsonhaler, Torsion-free E-modules, J. Alg., 115 (1988), pp. 401-411. Zbl0639.13010MR943264
  12. [N] J. Neukirch, Class Field Theory, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1980. Zbl0587.12001MR819231
  13. [P1] R.S. Pierce, Subrings of simple algebras, Mich. Math. J., 7 (1960), pp. 241-243. Zbl0103.26803MR148707
  14. [P2] R.S. Pierce, Permutation representations with trivial set stabilizers, J. Alg., 95 (1985), pp. 88-95. Zbl0595.20007MR797657
  15. [P-V1] R.S. Pierce - C.I. Vinsonhaler, Realizing central division algebras, Pac. J. Math., 109 (1983), pp. 165-177; correction, 130 (1987), pp. 397-399. Zbl0533.16009MR716296
  16. [P-V2] R.S. Pierce - C.I. Vinsonhalfr, Realizing algebraic number fields, Lecture Notes in Mathematics, 1006, Springer-Verlag, New York (1982/83), pp. 49-96. Zbl0515.12006MR722613
  17. [P-V3] R.S. Pierce- C.I. Vinsonhaler, Classifying E-rings (manuscript). Zbl0728.20047
  18. [Re] J.D. Reid, On the ring of quasi-endomorphisms of a torsion-free group Topics in Abelian Groups, Chicago (1963), pp. 51-68. MR169915
  19. [Ri] P. Ribenboim, Modules sur un anneau de Dedekind, Summa Brasil Math., 3 (1952), pp. 21-36. Zbl0049.16001MR55976
  20. [S] P. Schultz, The endomorphism ring of the additive group of a ring, J. Aust. Math. Soc., 15 (1973), pp. 60-69. Zbl0257.20037MR338218
  21. [W] E. Weiss, Algebraic Number Theory, McGraw-Hill, New York, 1963. Zbl0115.03601MR159805
  22. [Z] H. Zassenhaus, Orders as endomorphism rings of modules of the same rank, J. Lond. Math. Soc., 42 (1967), pp. 180-182. Zbl0145.26405MR206051

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.