The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Carriers of torsion-free groups”

Sylow P-Subgroups of Abelian Group Rings

Danchev, P. (2003)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: Primary 20C07, 20K10, 20K20, 20K21; Secondary 16U60, 16S34. Let PG be the abelian modular group ring of the abelian group G over the abelian ring P with 1 and prime char P = p. In the present article,the p-primary components Up(PG) and S(PG) of the groups of units U(PG) and V(PG) are classified for some major classes of abelian groups. Suppose K is a first kind field with respect to p in char K ≠ p and A is an abelian p-group. In the...

Square subgroups of rank two abelian groups

A. M. Aghdam, A. Najafizadeh (2009)

Colloquium Mathematicae

Similarity:

Let G be an abelian group and ◻ G its square subgroup as defined in the introduction. We show that the square subgroup of a non-homogeneous and indecomposable torsion-free group G of rank two is a pure subgroup of G and that G/◻ G is a nil group.