On M -sequences associated to filtrations

B. Torrecillas; F. Van Oystaeyen

Rendiconti del Seminario Matematico della Università di Padova (1990)

  • Volume: 84, page 283-300
  • ISSN: 0041-8994

How to cite

top

Torrecillas, B., and Van Oystaeyen, F.. "On $M$-sequences associated to filtrations." Rendiconti del Seminario Matematico della Università di Padova 84 (1990): 283-300. <http://eudml.org/doc/108204>.

@article{Torrecillas1990,
author = {Torrecillas, B., Van Oystaeyen, F.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {M-sequences; generalized regular sequences; graded modules; filtrations},
language = {eng},
pages = {283-300},
publisher = {Seminario Matematico of the University of Padua},
title = {On $M$-sequences associated to filtrations},
url = {http://eudml.org/doc/108204},
volume = {84},
year = {1990},
}

TY - JOUR
AU - Torrecillas, B.
AU - Van Oystaeyen, F.
TI - On $M$-sequences associated to filtrations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1990
PB - Seminario Matematico of the University of Padua
VL - 84
SP - 283
EP - 300
LA - eng
KW - M-sequences; generalized regular sequences; graded modules; filtrations
UR - http://eudml.org/doc/108204
ER -

References

top
  1. [1] A. Altman - S. Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Mathematics, 146, Springer-Verlag, Berlin, 1970. Zbl0215.37201MR274461
  2. [2] M.J. Asensio - M. Van Den Bergh - F. Van Oystaeyen, A new algebraic approach to microlocalization, Trans. Amer. Math. Soc., to appear. Zbl0686.16002MR958890
  3. [3] P. Bouchard, Suites régulières-homogènes et profondeur graduée, Ann. Sc. Math. Québec, Vol. VI (1982), pp. 23-42. Zbl0509.13011MR672119
  4. [4] N. Bourbaki, Algèbre commutative, Ch. I, Ch. II, Hermann, Paris, 1961. 
  5. [5] M. Fiorentini, On relative regular sequences, J. Algebra (1971), pp. 384-389. Zbl0224.13011MR277517
  6. [6] J. Golan, Localization of Noncommutative Rings, Marcel Dekker, New York, 1975. Zbl0302.16002MR366961
  7. [7] O. Goldman, Rings and modules of quotients, J. Algebra, 13 (1969), pp. 10-47. Zbl0201.04002MR245608
  8. [8] J. Herzog, When is a regular sequence super regular?, Nagoya Math. J., 83 (1981), pp. 183-195. Zbl0431.13015MR632652
  9. [9] Li Huishi - F. Van Oystaeyen, Zariskian Filtrations, Monograph, to appear. 
  10. [10] Li Huishi - F. Van Oystaeyen, Zariskian filtrations, Comm. Algebra, Vol. 1 (1990). Zbl0691.16003MR1030604
  11. [11] C. Huneke, The theory of d-sequences and powers of ideals, Advances in Mathematics, 46 (1982). Zbl0505.13004MR683201
  12. [12] S. Tosi, Successioni M-regolari relativamente ad un sotto A-modulo, Univ. Ferrara, Sci. Math., XI (1985), pp. 11-22. Zbl0587.13001
  13. [13] P. Valabrega - G. VALLA, Forms rings and regular sequences, Nagoya Univ. Math. J., 72 (1978), pp. 93-101. Zbl0362.13007MR514892
  14. [14] A. Van Den Essen, Algebraic microlocalization, Comm. Algebra, 14 (1986), pp. 971-1000. Zbl0607.16001MR837269
  15. [15] C. Nastasescu - F. Van Oystaeyen, Graded Ring Theory, Library of Math., Vol. North Holland. Zbl0494.16001MR676974

NotesEmbed ?

top

You must be logged in to post comments.