On M -sequences associated to filtrations

B. Torrecillas; F. Van Oystaeyen

Rendiconti del Seminario Matematico della Università di Padova (1990)

  • Volume: 84, page 283-300
  • ISSN: 0041-8994

How to cite

top

Torrecillas, B., and Van Oystaeyen, F.. "On $M$-sequences associated to filtrations." Rendiconti del Seminario Matematico della Università di Padova 84 (1990): 283-300. <http://eudml.org/doc/108204>.

@article{Torrecillas1990,
author = {Torrecillas, B., Van Oystaeyen, F.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {M-sequences; generalized regular sequences; graded modules; filtrations},
language = {eng},
pages = {283-300},
publisher = {Seminario Matematico of the University of Padua},
title = {On $M$-sequences associated to filtrations},
url = {http://eudml.org/doc/108204},
volume = {84},
year = {1990},
}

TY - JOUR
AU - Torrecillas, B.
AU - Van Oystaeyen, F.
TI - On $M$-sequences associated to filtrations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1990
PB - Seminario Matematico of the University of Padua
VL - 84
SP - 283
EP - 300
LA - eng
KW - M-sequences; generalized regular sequences; graded modules; filtrations
UR - http://eudml.org/doc/108204
ER -

References

top
  1. [1] A. Altman - S. Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Mathematics, 146, Springer-Verlag, Berlin, 1970. Zbl0215.37201MR274461
  2. [2] M.J. Asensio - M. Van Den Bergh - F. Van Oystaeyen, A new algebraic approach to microlocalization, Trans. Amer. Math. Soc., to appear. Zbl0686.16002MR958890
  3. [3] P. Bouchard, Suites régulières-homogènes et profondeur graduée, Ann. Sc. Math. Québec, Vol. VI (1982), pp. 23-42. Zbl0509.13011MR672119
  4. [4] N. Bourbaki, Algèbre commutative, Ch. I, Ch. II, Hermann, Paris, 1961. 
  5. [5] M. Fiorentini, On relative regular sequences, J. Algebra (1971), pp. 384-389. Zbl0224.13011MR277517
  6. [6] J. Golan, Localization of Noncommutative Rings, Marcel Dekker, New York, 1975. Zbl0302.16002MR366961
  7. [7] O. Goldman, Rings and modules of quotients, J. Algebra, 13 (1969), pp. 10-47. Zbl0201.04002MR245608
  8. [8] J. Herzog, When is a regular sequence super regular?, Nagoya Math. J., 83 (1981), pp. 183-195. Zbl0431.13015MR632652
  9. [9] Li Huishi - F. Van Oystaeyen, Zariskian Filtrations, Monograph, to appear. 
  10. [10] Li Huishi - F. Van Oystaeyen, Zariskian filtrations, Comm. Algebra, Vol. 1 (1990). Zbl0691.16003MR1030604
  11. [11] C. Huneke, The theory of d-sequences and powers of ideals, Advances in Mathematics, 46 (1982). Zbl0505.13004MR683201
  12. [12] S. Tosi, Successioni M-regolari relativamente ad un sotto A-modulo, Univ. Ferrara, Sci. Math., XI (1985), pp. 11-22. Zbl0587.13001
  13. [13] P. Valabrega - G. VALLA, Forms rings and regular sequences, Nagoya Univ. Math. J., 72 (1978), pp. 93-101. Zbl0362.13007MR514892
  14. [14] A. Van Den Essen, Algebraic microlocalization, Comm. Algebra, 14 (1986), pp. 971-1000. Zbl0607.16001MR837269
  15. [15] C. Nastasescu - F. Van Oystaeyen, Graded Ring Theory, Library of Math., Vol. North Holland. Zbl0494.16001MR676974

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.