Strong Maehara and Takeuti type interpolation theorems for L k , k 2 +

Ruggero Ferro

Rendiconti del Seminario Matematico della Università di Padova (1991)

  • Volume: 85, page 291-307
  • ISSN: 0041-8994

How to cite

top

Ferro, Ruggero. "Strong Maehara and Takeuti type interpolation theorems for $L^{2+}_{k,k}$." Rendiconti del Seminario Matematico della Università di Padova 85 (1991): 291-307. <http://eudml.org/doc/108222>.

@article{Ferro1991,
author = {Ferro, Ruggero},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {infinitary logic; interpolation; infinite quantifier language; chain models},
language = {eng},
pages = {291-307},
publisher = {Seminario Matematico of the University of Padua},
title = {Strong Maehara and Takeuti type interpolation theorems for $L^\{2+\}_\{k,k\}$},
url = {http://eudml.org/doc/108222},
volume = {85},
year = {1991},
}

TY - JOUR
AU - Ferro, Ruggero
TI - Strong Maehara and Takeuti type interpolation theorems for $L^{2+}_{k,k}$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1991
PB - Seminario Matematico of the University of Padua
VL - 85
SP - 291
EP - 307
LA - eng
KW - infinitary logic; interpolation; infinite quantifier language; chain models
UR - http://eudml.org/doc/108222
ER -

References

top
  1. [1] A. Baldo, Complete interpolation theorems for L2+k, k, Bollettino U.M.I. (6), 2-B (1983), pp. 759-777. Zbl0558.03013MR737433
  2. [2] C.C. Chang, Two interpolation theorems, Proceedings of the Rome Conference on Model Theory, Symposia Mathematica, Vol. V, Academic Press, New York (1970), pp. 5-19. Zbl0222.02008MR282819
  3. [3] E. Cunningham, Chain models: applications of consistency properties and back-and-forth techniques in infinite quantifier languages, Infinitary Logic: in Memoriam Carol Karp, Springer-Verlag, Berlin (1975), pp. 125-142. MR476485
  4. [4] R. Ferro, Consistency property and model existence theorem for second order negative languages with conjunctions and quantifications over sets of cardinality smaller than a strong limit cardinal of denumerable cofinality, Rend. Sem. Mat. Univ. Padova, 55 (1976), pp. 121-141. Zbl0365.02006MR460065
  5. [5] R. Ferro, Interpolation theorems for L2+k, k, JSL, 53 (1978), pp. 535-549. Zbl0397.03019MR503791
  6. [6] R. Ferro, Seq-consistency property and interpolation theorems, Rend. Sem. Mat. Univ. Padova, 70 (1983), pp. 133-145. Zbl0534.03014MR742115
  7. [7] R. Ferro, ω-soddisfacibilità e teoremi di interpolazione, Atti degli incontri di logica matematica della Scuola di Specializzazione in logica matematica di Siena, Vol. 3, CLEUP, Padova (1987), pp. 187-197. Zbl0666.03029
  8. [8] C. Karp, Infinite quantifier languages and ω-chains of models, Proceedings of the Tarski Symposium, American Mathematical Society, Providence (1974). Zbl0308.02016
  9. [9] S. Maehara - G. Takeuti, Two interpolation theorem for a positive second order predicate calculus, JSL, 36 (1971), pp. 262-270. Zbl0278.02013MR307876
  10. [10] J.I. Malitz, Infinitary analogs of theorems from first order model theory, JSL, 36 (1971), pp. 216-228. Zbl0232.02037MR290943

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.