On integral currents with constant mean curvature

Frank Duzaar; Martin Fuch

Rendiconti del Seminario Matematico della Università di Padova (1991)

  • Volume: 85, page 79-103
  • ISSN: 0041-8994

How to cite

top

Duzaar, Frank, and Fuch, Martin. "On integral currents with constant mean curvature." Rendiconti del Seminario Matematico della Università di Padova 85 (1991): 79-103. <http://eudml.org/doc/108226>.

@article{Duzaar1991,
author = {Duzaar, Frank, Fuch, Martin},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Plateau-problem; oriented compact dimensional submanifold; locally rectifiable -current; mean curvature vectorfield},
language = {eng},
pages = {79-103},
publisher = {Seminario Matematico of the University of Padua},
title = {On integral currents with constant mean curvature},
url = {http://eudml.org/doc/108226},
volume = {85},
year = {1991},
}

TY - JOUR
AU - Duzaar, Frank
AU - Fuch, Martin
TI - On integral currents with constant mean curvature
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1991
PB - Seminario Matematico of the University of Padua
VL - 85
SP - 79
EP - 103
LA - eng
KW - Plateau-problem; oriented compact dimensional submanifold; locally rectifiable -current; mean curvature vectorfield
UR - http://eudml.org/doc/108226
ER -

References

top
  1. [AF] F.J. Almgren, Optimal Isoperimetric Inequalities, Indiana Univ. Math. J., 35 (1986), pp. 451-547. Zbl0585.49030MR855173
  2. [AW] W.K. Allard, On the first variation of a varifold, Ann. of Math., 95 (1972), pp. 417-491. Zbl0252.49028MR307015
  3. [B] E. Barozzi, Il problema di Plateau in domini illiminati, Rend. Sem. Mat. Univ. Padova, 70 (1983), pp. 89-98. Zbl0534.49027MR742112
  4. [BG] E. Barozzi - E.H.A. Gonzalez, Least area problems with a volume constraint, Société Mathématique de France, Astérisque, 118 (1984), pp. 33-35. Zbl0617.76023MR761736
  5. [DF1] F. Duzaar - M. Fuchs, On the existence of integral currents with prescribed mean curvature vector, Preprint 1989. 
  6. [DF2] F. Duzaar - M. Fuchs, Existence of area minimizing tangent cones of integral currents with prescribed mean curvature, Preprint 1989. Zbl0830.49027MR1413832
  7. [F] H. Federer, Geometric measure theory, Berlin- Heidelberg-New York1969. Zbl0176.00801MR257325
  8. [GMT] E.H.A. Gonzalez - U. Massari - I. Tamanini, On the regularity of boundaries of sets minimizing perimeter with a volume constraint, Indiana Univ. Math., 32 (1983), 25-37. Zbl0486.49024MR684753
  9. [S] L. Simon, Lectures on geometric measure theory, Proceedings C.M.A., 3, Canberra1983. Zbl0546.49019MR756417

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.