Some uniqueness results for degenerate elliptic operators in two variables
Ferruccio Colombini; Daniele Del Santo
Rendiconti del Seminario Matematico della Università di Padova (1991)
- Volume: 86, page 111-129
- ISSN: 0041-8994
Access Full Article
topHow to cite
topColombini, Ferruccio, and Del Santo, Daniele. "Some uniqueness results for degenerate elliptic operators in two variables." Rendiconti del Seminario Matematico della Università di Padova 86 (1991): 111-129. <http://eudml.org/doc/108227>.
@article{Colombini1991,
author = {Colombini, Ferruccio, Del Santo, Daniele},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {degenerate second order elliptic operator; unique continuation; Carleman estimates},
language = {eng},
pages = {111-129},
publisher = {Seminario Matematico of the University of Padua},
title = {Some uniqueness results for degenerate elliptic operators in two variables},
url = {http://eudml.org/doc/108227},
volume = {86},
year = {1991},
}
TY - JOUR
AU - Colombini, Ferruccio
AU - Del Santo, Daniele
TI - Some uniqueness results for degenerate elliptic operators in two variables
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1991
PB - Seminario Matematico of the University of Padua
VL - 86
SP - 111
EP - 129
LA - eng
KW - degenerate second order elliptic operator; unique continuation; Carleman estimates
UR - http://eudml.org/doc/108227
ER -
References
top- [1] S. Alinhac, Unicité du problème de Cauchy pour des opérateurs du second ordre d symboles réels, Ann. Inst. Fourier, Grenoble, 34 (1984), pp. 89-109. Zbl0507.35001MR746497
- [2] S. Alinhac - C. ZUILY, Unicité et non unicité du problème de Cauchy pour des opérateurs hyperboliques d caractéristiques doubles, Comm. in P. D. E., 7 (1981), pp. 799-828. Zbl0482.35052MR623646
- [3] M.S. Baouendi - E. C. ZACHMANOGLOU, Unique continuation of solutions of partial differential equations and inequalities from manifolds of any dimension, Duke Math. J., 45 (1978), pp. 1-13. Zbl0373.35001MR486484
- [4] A.P. Calderón, Uniqueness in the Cauchy problem for partial differential equations, Amer. J. Math., 80 (1958), pp. 16-36. Zbl0080.30302MR104925
- [5] P. Cohen, The non-uniqueness of the Cauchy problem, O.N.R. Techn. Report, 93, Stanford (1960).
- [6] F. Colombini - D. Del Santo - C. Zuily, Uniqueness and non-uniqueness in the Cauchy problem of degenerate elliptic operators, to appear. Zbl0792.35065
- [7] F. Colombini - S. Spagnolo, A non-uniqueness result for the operators with principal part ∂2t + a(t) ∂2x,, in Partial Differential Equations and the Calculus of Variations Essays in honor de Ennio De Giorgi, Progress in Non-linear P.D.E. and their appl., vol. 1, Birkhäuser, Boston (1989), pp. 331-353. Zbl0694.35030
- [8] L. Nirenberg, Uniqueness in the Cauchy problem for a degenerate elliptic second order equation, in Differential Geometry and Complex Analysis, Springer-Verlag, Berlin (1985), pp. 213-218. Zbl0572.35043MR780047
- [9] X. Saint Raymond, L'unicité pour les problèmes de Cauchy linéaires du premier ordre, L'Ens. Math., 32 (1986), pp. 1-55. Zbl0625.35009MR850550
- [10] K. Watanabe, L'unicité du prolongement des solutions des équations elliptiques dégénérées, Tohoku Math. J., 34 (1982), pp. 239-249. Zbl0476.35016MR664731
- [11] C. Zuily, Uniqueness and non-uniqueness in the Cauchy problem, Progress in Math., Vol. 33, Birkhäuser, Boston (1983). Zbl0521.35003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.