Chain conditions and continuous mappings on C p ( X )

N. D. Kalamidas

Rendiconti del Seminario Matematico della Università di Padova (1992)

  • Volume: 87, page 19-27
  • ISSN: 0041-8994

How to cite

top

Kalamidas, N. D.. "Chain conditions and continuous mappings on $C_p(X)$." Rendiconti del Seminario Matematico della Università di Padova 87 (1992): 19-27. <http://eudml.org/doc/108249>.

@article{Kalamidas1992,
author = {Kalamidas, N. D.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {chain conditions; norm separable Banach spaces; caliber; weak topology},
language = {eng},
pages = {19-27},
publisher = {Seminario Matematico of the University of Padua},
title = {Chain conditions and continuous mappings on $C_p(X)$},
url = {http://eudml.org/doc/108249},
volume = {87},
year = {1992},
}

TY - JOUR
AU - Kalamidas, N. D.
TI - Chain conditions and continuous mappings on $C_p(X)$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1992
PB - Seminario Matematico of the University of Padua
VL - 87
SP - 19
EP - 27
LA - eng
KW - chain conditions; norm separable Banach spaces; caliber; weak topology
UR - http://eudml.org/doc/108249
ER -

References

top
  1. [1] A.V. Arhangel'skii, Function spaces in the topology of pointwise convergence and compact sets, Uspekhi Mat. Nank., 39:5 (1984), pp. 11-50. Zbl0568.54016
  2. [2] A.V. Arhangel'skii, On linear homeomorphisms of function spaces, Soviet Math. Dokl., 25, No. 3 (1982). Zbl0522.54015
  3. [3] A.V. Arhangel'skii - V.V. Tkačuk, Calibers and point-finite cellularity of the space Cp(X) and questions of S. Gulko and M. Husek, Topology and its Applications, 23 (1986), pp. 65-73, North-Holland. Zbl0591.54023MR849094
  4. [4] W.W. Comfort - S. Negrepontis, Chain Conditions in Topology, Cambridge Tracts in Mathematics, Vol. 79, Cambridge University Press, Cambridge (1982). Zbl0488.54002MR665100
  5. [5] B.A. Efimov, Mappings and embeddings of dyadic spaces, Mat. Sb., 103 (1977), pp. 52-68. Zbl0351.54017MR454939
  6. [6] H. Rosenthal, On injective Banach spaces and the spaces L∞ (μ) for finite measures μ, Acta Mathematica, 124 (1970), pp. 205-248. Zbl0207.42803
  7. [7] V.V. Tkačuk, The spaces Cp(X): Decomposition into a countable union of bounded subspaces and completeness properties, Topology and its Applications, 22 (1986), pp. 241-253. Zbl0596.54015MR842658
  8. [8] V.V. Tkačuk, The smallest subring of the ring Cp(C p(X)) containing χU is everywhere dense in Cp(C p(X)), Vestnik Moskovskogo Universiteta Matematica, 42, No. 1 (1987), pp. 20-23. Zbl0624.54015
  9. [9] A.I. Tulcea, On pointwise convergence, compactness and equicontinuity, Adv. Math., 12 (1974), pp. 171-177. Zbl0301.46032MR405103

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.