Local existence, uniqueness and regularity for a class of degenerate parabolic systems arising in biological models

Vincenzo Vespri

Rendiconti del Seminario Matematico della Università di Padova (1992)

  • Volume: 87, page 209-244
  • ISSN: 0041-8994

How to cite

top

Vespri, Vincenzo. "Local existence, uniqueness and regularity for a class of degenerate parabolic systems arising in biological models." Rendiconti del Seminario Matematico della Università di Padova 87 (1992): 209-244. <http://eudml.org/doc/108251>.

@article{Vespri1992,
author = {Vespri, Vincenzo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Cauchy problems; linearization method; analytic semigroup theory; degenerate linear elliptic operators},
language = {eng},
pages = {209-244},
publisher = {Seminario Matematico of the University of Padua},
title = {Local existence, uniqueness and regularity for a class of degenerate parabolic systems arising in biological models},
url = {http://eudml.org/doc/108251},
volume = {87},
year = {1992},
}

TY - JOUR
AU - Vespri, Vincenzo
TI - Local existence, uniqueness and regularity for a class of degenerate parabolic systems arising in biological models
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1992
PB - Seminario Matematico of the University of Padua
VL - 87
SP - 209
EP - 244
LA - eng
KW - Cauchy problems; linearization method; analytic semigroup theory; degenerate linear elliptic operators
UR - http://eudml.org/doc/108251
ER -

References

top
  1. [1] S. Agmon, On the eigenfunctions and the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math., 15 (1962), pp. 119-147. Zbl0109.32701MR147774
  2. [2] W. Alt, Models for mutual attractions and aggregations of motile individuals, L.N.B. 57, Proceedings of Mathematics in Biology and Medicine, Capasso-Grosso-Papaveri Fontana editors, Bari (1983). Zbl0591.92025
  3. [3] D.G. Aronson - A. Tesei - H. Weinberger, A density dependent diffusion system with stable discontinuous stationary solutions, Ann. Mat. Pura Appl., to appear. Zbl0673.35054
  4. [4] M. Bertsch - M.E. Gurtin - D. Hilhorst - L.A. Peletier, On interacting populations that disperse to avoid crowding: the effect of a sedentary colony, J. Math. Biology, 19 (1984), pp. 1-12. Zbl0538.92020MR737167
  5. [5] M. Bertsch - M.E. Gurtin - D. Hilhorst - L.A. Peletier, On interacting populations that disperse to avoid crowding: preservation of segregation, J. Math. Biology, 23 (1985), pp. 1-13. Zbl0596.35074MR821681
  6. [6] M. Bertsch - D. Hilhorst, A density dependent diffusion problem in population dynamics, SIAM J. Math. Anal., 17 (1986), pp. 863-883. Zbl0607.35052MR846394
  7. [7] M. Bertsch - D.E. Gurtin - D. Hilhorst, On a degenerate diffusion equation of the form c(z)t = Φ(zx)x with applications to population dynamics, J. Diff. Eqs., 67 (1987), pp. 56-89. Zbl0624.35049
  8. [8] S. Campanato - G. Stampacchia, Sulle maggiorazioni in Lp nella teoria delle equazioni ellittiche, Boll. Un. Mat. Ital., 20 (1965), pp. 393-399. Zbl0142.37604MR192169
  9. [9] P. Cannarsa - B. TERRENI - V. VESPRI, Analytic semigroups generated by nonvariational elliptic systems of second order under Dirichlet boundary conditions, J. Math. Anal. Appl., 112 (1985), pp. 56-103. Zbl0593.47048MR812793
  10. [10] P. Cannarsa - V. Vespri, Generation of analytic semigroups in the LP topology by elliptic operators in Rn, Israel J. Math., 61 (1988), pp. 235-255. Zbl0669.35026MR941240
  11. [11] V. Capasso- S.L. Paveri Fontana, A mathematical model for the 1973 cholera epidemic in the european mediterranean region, Rev. Epidém. Santé Publ., 27 (1979), pp. 121-132. 
  12. [12] V. Capasso - B. Grosso - S.L. Paveri Fontana, Proceedings of mathematics in Biology and Medicine, L.N.S. 57, Bari (1983). Zbl0559.00025
  13. [13] R. Dal Passo - P. De Mottoni, On existence, uniqueness and attractivity of stationary solutions to some quasilinear parabolic systems, L.B.N. 57, Proceedings of Mathematics in Biology and Medicine, Capasso- Grosso-Paveri Fontana editors, Bari (1983). Zbl0572.35035
  14. [14] A. Fasano - M. Primicerio, Nonlinear diffusion problems, L.N.S. 1224, Corso CIME, Montecatini Terme (1985). Zbl0595.00014
  15. [15] E.F. Keller - L. A. SEGEL, Model of chemotaxis, J. Theor. Biol., 30 (1971), pp. 225-234. Zbl1170.92307
  16. [16] J.L. Lions, Théoremes de trace et d'interpolation - I, Ann. Scuola Norm. Sup. Pisa, 13 (1959), pp. 389-403. Zbl0097.09502MR119092
  17. [17] J.L. Lions - J. PEETRE, Sur une class d'espaces d'interpolation, Publ. I.H.E.S., Paris (1964), pp. 5-68. Zbl0148.11403MR165343
  18. [18] A. Lunardi, On the local dynamical system associated to a fully nonlinear abstract parabolic equation, in Nonlinear Analysis and Applications, V. Laksmikantham editor (1987), pp. 319-326. Zbl0646.47045MR912310
  19. [19] H. Matano - M. Mimura, Pattern formation in competition diffusion systems in nonconvex domains, Publ. Res. Inst. Math. Sci. Kyoto Univ., 19 (1983), pp. 1049-1079. Zbl0548.35063MR723460
  20. [20] M. Mimura, Stationary pattern of some density dependent diffusion systems with competitive dynamics, Hiroshima Math. J., 11 (1981), pp. 621-635. Zbl0483.35045MR635042
  21. [21] M.A. Pozio - A. TESEI, Degenerate parabolic problems in populaction dynamics, Japan J. Appl. Math., 2 (1985), pp. 351-380. MR839335
  22. [22] M.A. Pozio - A. TESEI, Global existence of solutions for a strongly coupled quasilinear parabolic system, Nonlinear Analysis, 14 (1990), pp. 657-690. Zbl0716.35034MR1049787
  23. [23] N. Shigesada - K. Kawasaki - E. Teramoto, Spatial segregation of interacting species, J. Theor. Biology, 79 (1979), pp. 83-99. MR540951
  24. [24] E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl., 107 (1985), pp. 16-66. Zbl0589.47042MR786012
  25. [25] V. Vespri, Analytic semigroups, degenerate elliptic operators and applications to nonlinear Cauchy problems, Ann. Mat. Pura Appl., 155 (1989), pp. 353-388. Zbl0709.35065MR1042844
  26. [26] W. Von Wahl, Gebrochene potenzen eines elliptischen operator und parabolische differentialgleichungen in raumen Hölderstetiger funktionen, Nachr. Akad. Wiss. Gottingen Math. Phis. Kl., 11 (1972), pp. 231-258. Zbl0251.35052MR313636

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.