The uniqueness as a generic property for some one-dimensional segmentation problems

Micol Amar; Virginia De Cicco

Rendiconti del Seminario Matematico della Università di Padova (1992)

  • Volume: 88, page 151-173
  • ISSN: 0041-8994

How to cite

top

Amar, Micol, and De Cicco, Virginia. "The uniqueness as a generic property for some one-dimensional segmentation problems." Rendiconti del Seminario Matematico della Università di Padova 88 (1992): 151-173. <http://eudml.org/doc/108266>.

@article{Amar1992,
author = {Amar, Micol, De Cicco, Virginia},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {one-dimensional segmentation; uniqueness},
language = {eng},
pages = {151-173},
publisher = {Seminario Matematico of the University of Padua},
title = {The uniqueness as a generic property for some one-dimensional segmentation problems},
url = {http://eudml.org/doc/108266},
volume = {88},
year = {1992},
}

TY - JOUR
AU - Amar, Micol
AU - De Cicco, Virginia
TI - The uniqueness as a generic property for some one-dimensional segmentation problems
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1992
PB - Seminario Matematico of the University of Padua
VL - 88
SP - 151
EP - 173
LA - eng
KW - one-dimensional segmentation; uniqueness
UR - http://eudml.org/doc/108266
ER -

References

top
  1. [1] L. Ambrosio, A compactness theorem for a special class of functions of bounded variation, Bull. Un. Mat. It., 3-B (1989), pp. 857-881. Zbl0767.49001MR1032614
  2. [2] L. Ambrosio, Variational problems in SBV, Acta Applicandae Mathematicae, 17 (1989), pp. 1-40. Zbl0697.49004MR1029833
  3. [3] L. Ambrosio - V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence, to appear on Comm. Pure Appl. Math. Zbl0722.49020
  4. [4] M. Carriero - E. Pascali, Uniqueness of the one-dimensional bounce problem as a generic property in L1([0, T]; R), Boll. Un. Mat. It. (6), 1-A (1982), pp. 87-91. Zbl0477.73005MR652366
  5. [5] G. Congedo - I. Tamanini, On the existence of solutions to a problem in image segmentation, to appear. 
  6. [6] G. Dal Maso - J.M. Morel - S. Solimini, A variational method in image segmentation: existence and approximation results, to appear on Acta Mathematica. Zbl0772.49006MR1149865
  7. [7] E. De Giorgi - M. Carriero- A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal., (3), 108 (1989), pp. 195-218. Zbl0682.49002MR1012174
  8. [8] A. Lasota - J. A. YORKE, The generic property of existence of solutions of differential equations in Banach spaces, J. Diff. Eq., 13 (1973), pp. 1-12. Zbl0259.34070MR335994
  9. [9] J.M. Morel - S. SOLIMINI, Segmentation of images by variational methods: a constructive approach, Revista Matem. de laUniv. Complutense de Madrid, 1 (1988), pp. 169-182. Zbl0679.68205MR977048
  10. [10] J.M. Morel - S. Solimini, Segmentation d'images par méthode variationelle: une preuve constructive d'existence, C.R. Acad. Sci. Paris, 308, Série I (1989), pp. 465-470. Zbl0676.68051MR994693
  11. [11] D. Mumford - J. SHAH, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42 (1989), pp. 577-685. Zbl0691.49036MR997568
  12. [12] D. Mumford - J. Shah, Boundary detection by minimizing functionals, Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 1985. 
  13. [13] W. Orlicz, Zur Theorie der Differentialgleichung y' = f(x, y), Bull. Acad. Polon. Sci. (1932), pp. 221-228. Zbl0006.30401
  14. [14] J. Shah, Segmentation by minimizing functionals: smoothing properties, to appear. 
  15. [15] G. Vidossich, Existence, uniqueness and approximation of fixed points as a generic property, Bull. Soc. Math. Brasil, 5 (1974), pp. 17-29. Zbl0349.47042MR397710

NotesEmbed ?

top

You must be logged in to post comments.