Necessary and sufficient conditions for the well posedness of the Cauchy problem for a class of hyperbolic operators with high variable multiplicity

V. Sordoni

Rendiconti del Seminario Matematico della Università di Padova (1992)

  • Volume: 88, page 263-280
  • ISSN: 0041-8994

How to cite

top

Sordoni, V.. "Necessary and sufficient conditions for the well posedness of the Cauchy problem for a class of hyperbolic operators with high variable multiplicity." Rendiconti del Seminario Matematico della Università di Padova 88 (1992): 263-280. <http://eudml.org/doc/108275>.

@article{Sordoni1992,
author = {Sordoni, V.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {well-posedness of the Cauchy problem},
language = {eng},
pages = {263-280},
publisher = {Seminario Matematico of the University of Padua},
title = {Necessary and sufficient conditions for the well posedness of the Cauchy problem for a class of hyperbolic operators with high variable multiplicity},
url = {http://eudml.org/doc/108275},
volume = {88},
year = {1992},
}

TY - JOUR
AU - Sordoni, V.
TI - Necessary and sufficient conditions for the well posedness of the Cauchy problem for a class of hyperbolic operators with high variable multiplicity
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1992
PB - Seminario Matematico of the University of Padua
VL - 88
SP - 263
EP - 280
LA - eng
KW - well-posedness of the Cauchy problem
UR - http://eudml.org/doc/108275
ER -

References

top
  1. [1] E. Bernardi - A. Bove - C. Parenti, Hyperbolic operators with double characteristics, preprint (1988). Zbl0677.47031
  2. [2] E. Bernardi - A. BOVE, Necessary and sufficient conditions for the well posedness of the Cauchy problem for a class of hyperbolic operators with triple charcteristics, J. An. Math., 54 (1990), pp. 21-59. Zbl0713.35049MR1041174
  3. [3] J. Chazarain, Opérateurs hyperboliques a caractéristiques de multiplicité constante, Ann. Inst. Fourier, 24, I (1974), pp. 173-202. Zbl0274.35045MR390512
  4. [4] A. Grigis, Hypoellipticité et paramétrix pour des opérateurs pseudodifferéntiels a caractéristique doubles, Astérisque, 34-35 (1976), pp. 183-205. Zbl0344.35019MR488185
  5. [5] L. Hörmander, The Cauchy problem for differential equations with double characteristics, J. An. Math., 32 (1977), pp. 118-196. Zbl0367.35054MR492751
  6. [6] V. Ia. Ivrii - V.M. Petkov, Necessary conditions for the Cauchy problem for non strictly hyperbolic equations to be well-posed, Uspehi Mat. Nauk., 29 (1974), pp. 3-70. Zbl0312.35049MR427843
  7. [7] T. Okaji, The Cauchy problem for non-effectively hyperbolic differential operators and their product, J. Math. Kyoto Univ., 29-2 (1989), pp. 317-340. Zbl0714.35044MR1015874
  8. [8] O.V. Zaitseva - V. IA. IVRII, On the well-posedness of the Cauchy problem for certain hyperbolic operators with characteristics of high variable multiplicity, Common. Moscow Math. Soc., 37 (1982), pp. 225-226. Zbl0548.35002MR676906

NotesEmbed ?

top

You must be logged in to post comments.