Triangular stochastic differential equations with boundary conditions

Marco Ferrante

Rendiconti del Seminario Matematico della Università di Padova (1993)

  • Volume: 90, page 159-188
  • ISSN: 0041-8994

How to cite

top

Ferrante, Marco. "Triangular stochastic differential equations with boundary conditions." Rendiconti del Seminario Matematico della Università di Padova 90 (1993): 159-188. <http://eudml.org/doc/108300>.

@article{Ferrante1993,
author = {Ferrante, Marco},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {stochastic differential equations; Markov property; Brownian motion; Markov field; boundary condition},
language = {eng},
pages = {159-188},
publisher = {Seminario Matematico of the University of Padua},
title = {Triangular stochastic differential equations with boundary conditions},
url = {http://eudml.org/doc/108300},
volume = {90},
year = {1993},
}

TY - JOUR
AU - Ferrante, Marco
TI - Triangular stochastic differential equations with boundary conditions
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1993
PB - Seminario Matematico of the University of Padua
VL - 90
SP - 159
EP - 188
LA - eng
KW - stochastic differential equations; Markov property; Brownian motion; Markov field; boundary condition
UR - http://eudml.org/doc/108300
ER -

References

top
  1. [1] M. Cheleyat-Maurel - D. Nualart, Onsager-Machlup functional for a class of anticipating processes, preprint. Zbl0767.60047
  2. [2] M. Ferrante, Stochastic differential equations with boundary conditions, M. Ph. Thesis SISSA, Trieste (Academic Year 1990/91). 
  3. [3] B. Jamison, Reciprocal processes, Z. Wahrsch. Verb. Gebiete, 30 (1974), pp. 65-86. Zbl0326.60033MR359016
  4. [4] S. Kusuoka, The nonlinear transformation of Gaussian measure on Banach space and its absolutely continuity, I, J. Fac. Science, Tokyo Univ., Sec. IA (1982), pp. 567-597. Zbl0525.60050MR687592
  5. [5] D. Nualart, Stochastic Calculus for Anticipating Processes, Publicacions del Dep. d'Estadistica, Univ. de Barcelona (1990). 
  6. [6] D. Nualart - E. Pardoux, Stochastic calculus with anticipating integrands, Probab. Theory Rel. Fields, 78 (1988), pp. 545-581. Zbl0629.60061MR950346
  7. [7] D. Nualart - E. Pardoux, Boundary value problems for stochastic differential equations, Ann. Prob., 19, (3) (1991), pp. 1118-1144. Zbl0736.60052MR1112409
  8. [8] D. Ocone - E. PARDOUX, A generalized Itô-Venzell formula. Application to a class of anticipating stochastic differential equations, Ann. Inst. Henri Poincaré, 25 (1) (1989), pp. 39-71. Zbl0674.60057MR995291
  9. [9] D. Ocone - E. Pardoux, Linear stochastic differential equations with boundary conditions, Probab. Theory Rel. Fields, 82 (1989), pp. 439-526. Zbl0661.60069MR1002898
  10. [10] F. Smithies, Integral Equations, Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press (1958). Zbl0082.31901MR104991

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.