The Picard boundary value problem for a third order stochastic difference equation

Marco Ferrante

Rendiconti del Seminario Matematico della Università di Padova (1996)

  • Volume: 96, page 85-98
  • ISSN: 0041-8994

How to cite

top

Ferrante, Marco. "The Picard boundary value problem for a third order stochastic difference equation." Rendiconti del Seminario Matematico della Università di Padova 96 (1996): 85-98. <http://eudml.org/doc/108416>.

@article{Ferrante1996,
author = {Ferrante, Marco},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {stochastic difference equation; Picard boundary condition; boundary value problem},
language = {eng},
pages = {85-98},
publisher = {Seminario Matematico of the University of Padua},
title = {The Picard boundary value problem for a third order stochastic difference equation},
url = {http://eudml.org/doc/108416},
volume = {96},
year = {1996},
}

TY - JOUR
AU - Ferrante, Marco
TI - The Picard boundary value problem for a third order stochastic difference equation
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1996
PB - Seminario Matematico of the University of Padua
VL - 96
SP - 85
EP - 98
LA - eng
KW - stochastic difference equation; Picard boundary condition; boundary value problem
UR - http://eudml.org/doc/108416
ER -

References

top
  1. [1] A. Alabert - D. Nualart, Some remarks on the conditional independence and the Markov property, in Stochastic Analysis and Related Topics, Progress in Probability, 31, Birkhäuser (1992). Zbl0789.60058MR1203381
  2. [2] M.C. Baccin - M. Ferrante, On a stochastic delay difference equation with boundary conditions and its Markov property, to appear on Stochastic Process. Appl. Zbl0846.60063MR1362323
  3. [3] C. Donati-Martin, Propriété de Markov des équations stationnaires discrétes quasi-linéaires, Stochastic. Process. Appl., 48 (1993), pp. 61-84. Zbl0788.60080MR1237168
  4. [4] M. Ferrante, Triangular stochastic differential equations with boundary conditions, Rend. Sem. Mat. Univ. Padova, 90 (1993), pp. 159-188. Zbl0795.60051MR1257138
  5. [5] M. Ferrante - D. Nualart, On the Markov property of a stochastic difference equation, Stochastic. Process. Appl., 52 (1994), pp. 239-250. Zbl0811.60050MR1290697
  6. [6] J. Lions, Quelques méthods de résolution des problèmes aux limites non linaires, Dunod (1969). 
  7. [7] D. Nualart - E. PARDOUX, Boundary value problems for stochastic differential equations, Ann. of Prob., 19, no. 3 (1991), pp. 1118-1144. Zbl0736.60052MR1112409
  8. [8] D. Nualart - E. Pardoux, Second order stochastic differential equations with Dirichlet boundary conditions, Stochastic. Process. Appl., 39 (1991), pp. 1-24. Zbl0745.60061MR1135081
  9. [9] A.C. Peterson, Existence and uniqueness theorems for nonlinear difference equations, J. Math. Anal. Appl., 125 (1987), pp. 185-191. Zbl0625.39002MR891358

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.