Quasi-basic submodules over valuation domains

Silvana Bazzoni; Luigi Salce

Rendiconti del Seminario Matematico della Università di Padova (1993)

  • Volume: 90, page 53-66
  • ISSN: 0041-8994

How to cite

top

Bazzoni, Silvana, and Salce, Luigi. "Quasi-basic submodules over valuation domains." Rendiconti del Seminario Matematico della Università di Padova 90 (1993): 53-66. <http://eudml.org/doc/108309>.

@article{Bazzoni1993,
author = {Bazzoni, Silvana, Salce, Luigi},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {invariants; modules over valuation domains; direct sums of uniserial submodules},
language = {eng},
pages = {53-66},
publisher = {Seminario Matematico of the University of Padua},
title = {Quasi-basic submodules over valuation domains},
url = {http://eudml.org/doc/108309},
volume = {90},
year = {1993},
}

TY - JOUR
AU - Bazzoni, Silvana
AU - Salce, Luigi
TI - Quasi-basic submodules over valuation domains
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1993
PB - Seminario Matematico of the University of Padua
VL - 90
SP - 53
EP - 66
LA - eng
KW - invariants; modules over valuation domains; direct sums of uniserial submodules
UR - http://eudml.org/doc/108309
ER -

References

top
  1. [BFS] S. Bazzoni - L. Fuchs - L. Salce, The hierarchy of uniserial modules over valuation domains, preprint. 
  2. [FS1] L. Fuchs - L. Salce, Prebasic submodules over valuation rings, Ann. Mat. Pura Appl., (IV), 32 (1982), pp. 257-274. Zbl0515.13007MR696046
  3. [FS2] L. Fuchs - L. Salce, Modules over Valuation Domains, Lecture Notes Pure Appl. Math. N.97, Marcel Dekker, New York (1985). Zbl0578.13004MR786121
  4. [G] P. Griffith, Infinite Abelian Groups, Chicago Lectures in Math., Chicago, London (1970). Zbl0204.35001MR289638
  5. [SZ] L. Salce - P. Zanardo, A Kulikov's result that does not extend to modules over general valuation domains, Proc. Amer. Math. Soc., 111 (1991), pp. 643-649. Zbl0733.13011MR1043419
  6. [S] S. Shelah, Nonstandard uniserial module over a uniserial domain exists, Lecture Notes Math. N. 1182, Springer-Verlag (1986), pp. 135-150. MR850056

NotesEmbed ?

top

You must be logged in to post comments.