Butler groups cannot be classified by certain invariants
Rendiconti del Seminario Matematico della Università di Padova (1993)
- Volume: 90, page 67-79
- ISSN: 0041-8994
Access Full Article
topHow to cite
topReferences
top- [AR1] D. Arnold, Finite Rank Torsion Free Abelian Groups and Rings, Lecture Notes in Mathematics, 931, Springer-Verlag, New York (1982). Zbl0493.20034MR665251
- [AR2] D. Arnold, Pure Subgroups of Finite Rank Completely Decomposable Groups, Lecture Notes in Mathematics, 874, Springer-Verlag, New York (1981), pp. 1-31. Zbl0466.20030MR645913
- [AV1] D. Arnold - C. Vinsonhaler, Pure Subgroups of Finite Rank Completely Decomposable Groups II, Lecture Notes in Mathematics, 1006, Springer-Verlag, New York (1983), pp. 97-143. Zbl0522.20037MR722614
- [AV2] D. Arnold - C. Vinsonhaler, Invariants for a class of torsion-free abelian groups, Proc. Amer. Math. Soc., 105 (1989), pp. 293-300. Zbl0673.20033MR935102
- [AV3] D. Arnold - C. Vinsonhaler, Quasi-isomorphism invariants for a class of torsion-free abelian groups, Houston J. Math., 15 (1989), pp. 327-340. Zbl0695.20031MR1032393
- [AV4] D. Arnold - C. Vinsonhaler, Duality and invariants for Butler groups, Pacific J. Math., 148 (1991), pp. 1-10. Zbl0752.20026MR1091526
- [BP1] R.A. Beaumont - R. Pierce, Torsion free rings, Illinois J. Math., 5 (1961), pp. 61-98. Zbl0108.03802MR148706
- [BP2] R.A. Beaumont - R. Pierce, Torsion free groups of rank two, Mem. Amer. Math. Soc., 38 (1961). Zbl0122.27802MR130297
- [BUT] M.C.R. Butler, A class of torsion-free abelian groups of finite rank, Proc. Lond. Math. Soc., 15 (1965), pp. 680-698. Zbl0131.02501MR218446
- [FU] L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York (1973). Zbl0257.20035MR349869
- [HM1] P. Hill - C. Megibben, Torsion free groups, Trans. Amer. Math. Soc., 295 (1986), pp. 735-751. Zbl0597.20047MR833706
- [HM2] P. Hill - C. Megibben, The classification of certain Butler groups, J. Algebra, to appear. Zbl0809.20047MR1244926
- [HM3] P. Hill - C. Megibben, Equivalence theorems for torsion-free groups, to appear. Zbl0801.20036MR1217269