Butler groups cannot be classified by certain invariants

Paul Hill; Charles Megibben

Rendiconti del Seminario Matematico della Università di Padova (1993)

  • Volume: 90, page 67-79
  • ISSN: 0041-8994

How to cite

top

Hill, Paul, and Megibben, Charles. "Butler groups cannot be classified by certain invariants." Rendiconti del Seminario Matematico della Università di Padova 90 (1993): 67-79. <http://eudml.org/doc/108310>.

@article{Hill1993,
author = {Hill, Paul, Megibben, Charles},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {quasi-isomorphic -groups; balanced exact sequences; completely decomposable of finite rank; type; balanced subgroups; typesets; cotypesets; endomorphism rings; Richman type; invariants; Butler groups},
language = {eng},
pages = {67-79},
publisher = {Seminario Matematico of the University of Padua},
title = {Butler groups cannot be classified by certain invariants},
url = {http://eudml.org/doc/108310},
volume = {90},
year = {1993},
}

TY - JOUR
AU - Hill, Paul
AU - Megibben, Charles
TI - Butler groups cannot be classified by certain invariants
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1993
PB - Seminario Matematico of the University of Padua
VL - 90
SP - 67
EP - 79
LA - eng
KW - quasi-isomorphic -groups; balanced exact sequences; completely decomposable of finite rank; type; balanced subgroups; typesets; cotypesets; endomorphism rings; Richman type; invariants; Butler groups
UR - http://eudml.org/doc/108310
ER -

References

top
  1. [AR1] D. Arnold, Finite Rank Torsion Free Abelian Groups and Rings, Lecture Notes in Mathematics, 931, Springer-Verlag, New York (1982). Zbl0493.20034MR665251
  2. [AR2] D. Arnold, Pure Subgroups of Finite Rank Completely Decomposable Groups, Lecture Notes in Mathematics, 874, Springer-Verlag, New York (1981), pp. 1-31. Zbl0466.20030MR645913
  3. [AV1] D. Arnold - C. Vinsonhaler, Pure Subgroups of Finite Rank Completely Decomposable Groups II, Lecture Notes in Mathematics, 1006, Springer-Verlag, New York (1983), pp. 97-143. Zbl0522.20037MR722614
  4. [AV2] D. Arnold - C. Vinsonhaler, Invariants for a class of torsion-free abelian groups, Proc. Amer. Math. Soc., 105 (1989), pp. 293-300. Zbl0673.20033MR935102
  5. [AV3] D. Arnold - C. Vinsonhaler, Quasi-isomorphism invariants for a class of torsion-free abelian groups, Houston J. Math., 15 (1989), pp. 327-340. Zbl0695.20031MR1032393
  6. [AV4] D. Arnold - C. Vinsonhaler, Duality and invariants for Butler groups, Pacific J. Math., 148 (1991), pp. 1-10. Zbl0752.20026MR1091526
  7. [BP1] R.A. Beaumont - R. Pierce, Torsion free rings, Illinois J. Math., 5 (1961), pp. 61-98. Zbl0108.03802MR148706
  8. [BP2] R.A. Beaumont - R. Pierce, Torsion free groups of rank two, Mem. Amer. Math. Soc., 38 (1961). Zbl0122.27802MR130297
  9. [BUT] M.C.R. Butler, A class of torsion-free abelian groups of finite rank, Proc. Lond. Math. Soc., 15 (1965), pp. 680-698. Zbl0131.02501MR218446
  10. [FU] L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York (1973). Zbl0257.20035MR349869
  11. [HM1] P. Hill - C. Megibben, Torsion free groups, Trans. Amer. Math. Soc., 295 (1986), pp. 735-751. Zbl0597.20047MR833706
  12. [HM2] P. Hill - C. Megibben, The classification of certain Butler groups, J. Algebra, to appear. Zbl0809.20047MR1244926
  13. [HM3] P. Hill - C. Megibben, Equivalence theorems for torsion-free groups, to appear. Zbl0801.20036MR1217269

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.