A certain property of abelian groups
Un gruppo abeliano senza torsione ed indecomponibile è detto iperindecomponibile se tutti i sottogruppi propri del suo inviluppo iniettivo che lo contengono sono indecomponibili. In questo lavoro si caratterizza la classe dei gruppi iperindecomponibili per mezzo di loro proprietà locali. I gruppi iperindecomponibili omogenei sono caratterizzati tramite la proprietà «factor-splitting».
We construct Bernstein sets in ℝ having some additional algebraic properties. In particular, solving a problem of Kraszewski, Rałowski, Szczepaniak and Żeberski, we construct a Bernstein set which is a < c-covering and improve some other results of Rałowski, Szczepaniak and Żeberski on nonmeasurable sets.