On the location of zeros of solutions of non-homogeneous linear differential equations

Steven B. Bank

Rendiconti del Seminario Matematico della Università di Padova (1994)

  • Volume: 92, page 135-163
  • ISSN: 0041-8994

How to cite

top

Bank, Steven B.. "On the location of zeros of solutions of non-homogeneous linear differential equations." Rendiconti del Seminario Matematico della Università di Padova 92 (1994): 135-163. <http://eudml.org/doc/108331>.

@article{Bank1994,
author = {Bank, Steven B.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {nonhomogeneous linear differential equation; complex domain},
language = {eng},
pages = {135-163},
publisher = {Seminario Matematico of the University of Padua},
title = {On the location of zeros of solutions of non-homogeneous linear differential equations},
url = {http://eudml.org/doc/108331},
volume = {92},
year = {1994},
}

TY - JOUR
AU - Bank, Steven B.
TI - On the location of zeros of solutions of non-homogeneous linear differential equations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1994
PB - Seminario Matematico of the University of Padua
VL - 92
SP - 135
EP - 163
LA - eng
KW - nonhomogeneous linear differential equation; complex domain
UR - http://eudml.org/doc/108331
ER -

References

top
  1. [1] S. Bank, A note on the location of complex zeros of solutions of linear differential equations, Complex Variables, 12 (1989), pp. 159-167. Research announcement, Bull. Amer. Math. Soc. (New Series), 18 (1988), pp. 35-38. Zbl0669.34011MR919655
  2. [2] S. Bank, On the oscillation of solutions of non-homogeneous linear differential equations, Analysis, 10 (1990), pp. 265-293. Zbl0711.34006MR1074836
  3. [3] S. Bank, A note on the rate of growth of solutions of algebraic differential equations in sectors, J. London Math. Soc., (2), 1 (1969), pp. 145-154. Zbl0182.11403MR249716
  4. [4] S. Bank, On the instability theory of differential polynomials, Ann. Math. Pura Appl., 74 (1966), pp. 84-112. Zbl0149.29702MR204785
  5. [5] S. Bank, On oscillation, continuation, and asymptotic expansions of solutions of linear differential equations, Rend, Sem. Mat. Univ. Padova, 85 (1991), pp. 1-25. Zbl0743.34012MR1142530
  6. [6] E.W. Chamberlain, The univalence of functions asymptotic to nonconstant logarithmic monomials, Proc. Amer. Math. Soc., 17 (1966), pp. 302-309. Zbl0143.29802MR190311
  7. [7] E. Hille, Ordinary Differential Equations in the Complex Domain, Wiley-Interscience, New York (1976). Zbl0343.34007MR499382
  8. [8] E. Hille, Analytic Function Theory, Volume II, Chelsea, New York (1973). Zbl0273.30002
  9. [9] R. Nevanlinna, Über Riemannsche Flächen mit endlich vielen Windungspunkten, Acta Math., 58 (1932), pp. 295-373. Zbl0004.35504MR1555350JFM58.0369.01
  10. [10] W. Strodt, Contributions to the asymptotic theory of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc., No., 13 (1954). Zbl0059.07701MR67290
  11. [11] W. Strodt, Principal solutions of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc., No., 26 (1957). Zbl0101.30003MR92901
  12. [12] W. Strodt, On the algebraic closure of certain partially ordered fields, Trans. Amer. Math. Soc.,105 (1962), pp. 229-250. Zbl0113.03301MR140514
  13. [13] W. Strodt - R.W. Wright, Asymptotic behavior of solutions and adjunction fields for nonlinear first-order differential equations, Mem. Amer. Math. Soc., No., 109 (1971). Zbl0235.34005MR284660
  14. [14] E.C. Titchmarsh, Theory of Functions, Oxford University Press, London (1939). Zbl0022.14602JFM65.0302.01
  15. [15] W. Waso, Asymptotic Expansions for Ordinary Differential Equations, Wiley, New York (1965). Zbl0133.35301
  16. [16] H. Wittich, Eindeutige Lösungen der Differentialgeichung w' = R(z, w), Math. Z., 74 (1960), pp. 278-288. Zbl0091.26102MR120413

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.