A modal logic of consistency
Rendiconti del Seminario Matematico della Università di Padova (1995)
- Volume: 93, page 143-152
- ISSN: 0041-8994
Access Full Article
topHow to cite
topBrunner, N.. "A modal logic of consistency." Rendiconti del Seminario Matematico della Università di Padova 93 (1995): 143-152. <http://eudml.org/doc/108352>.
@article{Brunner1995,
author = {Brunner, N.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {modal logic; consistency; Fraenkel-Mostowski permutation models; incompleteness theorem},
language = {eng},
pages = {143-152},
publisher = {Seminario Matematico of the University of Padua},
title = {A modal logic of consistency},
url = {http://eudml.org/doc/108352},
volume = {93},
year = {1995},
}
TY - JOUR
AU - Brunner, N.
TI - A modal logic of consistency
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1995
PB - Seminario Matematico of the University of Padua
VL - 93
SP - 143
EP - 152
LA - eng
KW - modal logic; consistency; Fraenkel-Mostowski permutation models; incompleteness theorem
UR - http://eudml.org/doc/108352
ER -
References
top- [1] M. Baaz - N. Brunner - K. Svozil, Effective Quantum Observables, e-print 9501018, QUANT-PH@XXX.LANL.GOV.
- [2] A. Blass - A. Scedrov, Freyd's Models for the Independence of the Axiom of Choice, Memoirs AMS, 79, Providence (1989). Zbl0687.03031MR981957
- [3] N. Brunner - J. Rubin, Permutation models and topological groups, Rend. Sem. Mat. Univ. Padova, 76 (1986), pp. 149-161. Zbl0622.03037MR881566
- [4] N. Brunner, TheFraenkel-Mostowski method, revisited, Notre Dame J. Formal Logic, 31 (1990), pp. 64-75. Zbl0701.03024MR1043792
- [5] P. Cameron, Oligomorphic Permutation Groups, LMS Lecture Notes, 152, Cambridge (1990). Zbl0813.20002MR1066691
- [6] W. Easton, Powers of regular cardinals, Ann. Math. Logic, 1 (1970), pp. 139-178. Zbl0209.30601MR269497
- [7] T. Forster, Permutation models in the sense of Rieger-Bernays, Zeitschrift Math. Logik Grundl. Math., 33 (1987), pp. 201-210. Zbl0634.03052MR894019
- [8] E. Hewitt - K. Ross, Abstract Harmonic Analysis, I, Springer Grundlehren, 115, Berlin (1963). Zbl0115.10603
- [9] T. Jech, The Axiom of Choice, North-Holland Studies in Logic, 75, Amsterdam (1973). Zbl0259.02051MR396271
- [10] D. Luce, Dimensionally invariant laws correspond to meaningful qualitative relations, Philosophy of Science, 45 (1978), pp. 81-95.
- [11] S. Scroggs, Extensions of the Lewis system S5, J. Symbolic Logic, 16 (1951), pp. 112-120. Zbl0043.00804MR42352
- [12] R. Solovay, Provability interpretations of modal logic, Israel J. Math., 25 (1976), pp. 287-304. Zbl0352.02019MR457153
- [13] Y. Suzuki - G. Wilmers, Non-standard models for set theory, in J. BELL et. al. (ed.): Proceedings of the Bertrand Russell Memorial Logic Conference, Leeds (1973), pp. 278-314. MR351814
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.