A modal logic of consistency

N. Brunner

Rendiconti del Seminario Matematico della Università di Padova (1995)

  • Volume: 93, page 143-152
  • ISSN: 0041-8994

How to cite

top

Brunner, N.. "A modal logic of consistency." Rendiconti del Seminario Matematico della Università di Padova 93 (1995): 143-152. <http://eudml.org/doc/108352>.

@article{Brunner1995,
author = {Brunner, N.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {modal logic; consistency; Fraenkel-Mostowski permutation models; incompleteness theorem},
language = {eng},
pages = {143-152},
publisher = {Seminario Matematico of the University of Padua},
title = {A modal logic of consistency},
url = {http://eudml.org/doc/108352},
volume = {93},
year = {1995},
}

TY - JOUR
AU - Brunner, N.
TI - A modal logic of consistency
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1995
PB - Seminario Matematico of the University of Padua
VL - 93
SP - 143
EP - 152
LA - eng
KW - modal logic; consistency; Fraenkel-Mostowski permutation models; incompleteness theorem
UR - http://eudml.org/doc/108352
ER -

References

top
  1. [1] M. Baaz - N. Brunner - K. Svozil, Effective Quantum Observables, e-print 9501018, QUANT-PH@XXX.LANL.GOV. 
  2. [2] A. Blass - A. Scedrov, Freyd's Models for the Independence of the Axiom of Choice, Memoirs AMS, 79, Providence (1989). Zbl0687.03031MR981957
  3. [3] N. Brunner - J. Rubin, Permutation models and topological groups, Rend. Sem. Mat. Univ. Padova, 76 (1986), pp. 149-161. Zbl0622.03037MR881566
  4. [4] N. Brunner, TheFraenkel-Mostowski method, revisited, Notre Dame J. Formal Logic, 31 (1990), pp. 64-75. Zbl0701.03024MR1043792
  5. [5] P. Cameron, Oligomorphic Permutation Groups, LMS Lecture Notes, 152, Cambridge (1990). Zbl0813.20002MR1066691
  6. [6] W. Easton, Powers of regular cardinals, Ann. Math. Logic, 1 (1970), pp. 139-178. Zbl0209.30601MR269497
  7. [7] T. Forster, Permutation models in the sense of Rieger-Bernays, Zeitschrift Math. Logik Grundl. Math., 33 (1987), pp. 201-210. Zbl0634.03052MR894019
  8. [8] E. Hewitt - K. Ross, Abstract Harmonic Analysis, I, Springer Grundlehren, 115, Berlin (1963). Zbl0115.10603
  9. [9] T. Jech, The Axiom of Choice, North-Holland Studies in Logic, 75, Amsterdam (1973). Zbl0259.02051MR396271
  10. [10] D. Luce, Dimensionally invariant laws correspond to meaningful qualitative relations, Philosophy of Science, 45 (1978), pp. 81-95. 
  11. [11] S. Scroggs, Extensions of the Lewis system S5, J. Symbolic Logic, 16 (1951), pp. 112-120. Zbl0043.00804MR42352
  12. [12] R. Solovay, Provability interpretations of modal logic, Israel J. Math., 25 (1976), pp. 287-304. Zbl0352.02019MR457153
  13. [13] Y. Suzuki - G. Wilmers, Non-standard models for set theory, in J. BELL et. al. (ed.): Proceedings of the Bertrand Russell Memorial Logic Conference, Leeds (1973), pp. 278-314. MR351814

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.