Some results of Gevrey and analytic regularity for semilinear weakly hyperbolic equations of Oleinik type

Renato Manfrin

Rendiconti del Seminario Matematico della Università di Padova (1995)

  • Volume: 94, page 165-213
  • ISSN: 0041-8994

How to cite

top

Manfrin, Renato. "Some results of Gevrey and analytic regularity for semilinear weakly hyperbolic equations of Oleinik type." Rendiconti del Seminario Matematico della Università di Padova 94 (1995): 165-213. <http://eudml.org/doc/108368>.

@article{Manfrin1995,
author = {Manfrin, Renato},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {propagation of Gevrey regularity},
language = {eng},
pages = {165-213},
publisher = {Seminario Matematico of the University of Padua},
title = {Some results of Gevrey and analytic regularity for semilinear weakly hyperbolic equations of Oleinik type},
url = {http://eudml.org/doc/108368},
volume = {94},
year = {1995},
}

TY - JOUR
AU - Manfrin, Renato
TI - Some results of Gevrey and analytic regularity for semilinear weakly hyperbolic equations of Oleinik type
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1995
PB - Seminario Matematico of the University of Padua
VL - 94
SP - 165
EP - 213
LA - eng
KW - propagation of Gevrey regularity
UR - http://eudml.org/doc/108368
ER -

References

top
  1. [A] R.A. Adams, Sobolev Spaces, Academic Press (1975). Zbl0314.46030MR450957
  2. [AM] S. Alinhac - G. Métivier, Propagation de l'analyticité des solutions de système hyperboliques nonlinéaires, Inv. Math., 75 (1984), pp. 189-203. Zbl0545.35063MR732545
  3. [AS] A. Arosio - S. Spagnolo, Global existence for abstract evolution equations of weakly hyperbolic type, J. Math. Pures Appl., 65 (1986), pp. 263-305. Zbl0616.35049MR875159
  4. [C] L. Cardosi, Evolution equations in scales of abstract Gevrey spaces, Boll. Un. Mat. Ital., 6 (1985), pp. 379-406. Zbl0612.35120MR805227
  5. [CDS] F. Colombini - E. De Giorgi - S. Spagnolo, Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Scu. Norm. Sup. Pisa, 6 (1979), pp. 511-559. Zbl0417.35049MR553796
  6. [CJS1] F. Colombini - E. Jannelli - S. Spagnolo, Non uniqueness in hyperbolic Cauchy problem, Ann. Math., 126 (1987), pp. 495-524. Zbl0649.35051MR916717
  7. [CJS2] F. Colombini - E. Jannelli - S. Spagnolo, Well posedness in the Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time, Ann. Scu. Norm. Sup. Pisa, 10 (1983), pp. 291-312. Zbl0543.35056MR728438
  8. [CS] F. Colombini - S. Spagnolo, An example of a weakly hyperbolic Cauchy problem not well posed in C∞, Acta Math., 148 (1982), pp. 243-253. Zbl0517.35053
  9. [D] P. D'Ancona, Gevrey well posedness of an abstract Cauchy problem of weakly hyperbolic type, Publ. RIMS Kyoto Univ., 24 (1988), pp. 433-449. Zbl0706.35077MR966182
  10. [DM] P. D'Ancona - R. Manfrin, Local solvability for a class of semilinear weakly hyperbolic equations, to appear Ann. Mat. Pura Appl. Zbl0849.35076
  11. [H] L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math., 24 (1971), pp. 671-704. Zbl0226.35019MR294849
  12. [K] T. Kato, The Cauchy problem for quasilinear symmetric hyperbolic systems, Arch. Rat. Mech. Anal., 58 (1975), pp. 181-205. Zbl0343.35056MR390516
  13. [J1] E. Jannelli, Analytic solutions of non linear hyperbolic systems, Boll. Un. Mat. Ital. (6), 5-B (1986), pp. 487-501. Zbl0612.35083MR860640
  14. [J2] E. Jannelli, Gevrey well posedness for a class of weakly hyperbolic equations, J. Math. Kyoto Univ., 24 (1984), pp. 763-778. Zbl0582.35070MR775986
  15. [LO] J. Leray - Y. Ohya, Systèmes nonlinéaires hyperboliques nonstrictes, Math. Ann., 70 (1967), pp. 167-205. Zbl0146.33701MR208136
  16. [M1] S. Mizohata, The Theory of Partial Differential Equations, University Press, Cambridge (1973). Zbl0263.35001MR599580
  17. [M2] S. Mizohata, On the Cauchy Problem, Academic Press (1985). Zbl0616.35002MR860041
  18. [M3] S. Mizohata, Analyticity of solutions of hyperbolic systems with analytic coefficients, Comm. Pure Appl. Math., 14 (1961), pp. 547-559. Zbl0105.07203MR132919
  19. [N1] T. Nishitani, Energy inequality for nonstrictly hyperbolic operators in Gevrey classes, J. Math. Kyoto Univ., 24 (1983), pp. 739-773. Zbl0552.35051MR728159
  20. [N2] T. Nishitani, Sur les équations hyperboliques à coefficients qui sont holderiens en t et de classe de Gevrey en x, Bull. Sci. Math.2e série, 107 (1983), pp. 113-138. Zbl0536.35042MR704720
  21. [N3] T. Nishitani, A necessary and sufficient condition for the hyperbolicity of second order equations with two indipendent variables, J. Math. Kyoto Univ., 24 (1984), pp. 91-104. Zbl0552.35049MR737827
  22. [O1] O.A. Oleinik, On the Cauchy problem for weakly hyperbolic equations, Comm. Pure Appl. Math., 23 (1970), pp. 569-586. MR264227
  23. [O2] O.A. Oleinik, Linear equations of second order with non negative characteristic form, Mat. Sb., 61 (1966), pp. 111-140 (English transl.: Transl. Am. Math. Soc. (2) 65, pp. 167-199). MR193383
  24. [OT] Y. Ohya - S. Tarama, Le problème de Cauchy a caractéristiques multiples dans la classe de Gevrey (coéfficients hölderiens en t), Proceedings of the Conference on Hyperbolic Equations and Related Topics, Kinokuniya, Tokyo, 1985. Zbl0665.35045
  25. [S1] S. Spagnolo, Analytic regularity of the solutions of a semilinear weakly hyperbolic equation, Ric. Mat. Suppl., 36 (1987), pp. 193-202. Zbl0692.35020MR956027
  26. [S2] S. Spagnolo, Some results of analytic regularity for the semi-linear weakly hyperbolic equations of the second order, Rend. Sem. Mat. Univ. Pol. Torino, Fascicolo Speciale 1988, Hyperbolic Equations (1987), pp. 203-329. Zbl0694.35018MR1007377
  27. [S3] S. Spagnolo, Analytic and Gevrey Well-Posedness of the Cauchy Problem for Second Order Weakly Hyperbolic Equations with Coefficients Irregular in Time, Taniguchi Symp. HERT, Katata (1984), pp. 363-380. Zbl0679.35057MR925258

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.