Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time
F. Colombini; E. Jannelli; S. Spagnolo
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1983)
- Volume: 10, Issue: 2, page 291-312
- ISSN: 0391-173X
Access Full Article
topHow to cite
topColombini, F., Jannelli, E., and Spagnolo, S.. "Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 10.2 (1983): 291-312. <http://eudml.org/doc/83908>.
@article{Colombini1983,
author = {Colombini, F., Jannelli, E., Spagnolo, S.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Cauchy problem; non-strict hyperbolicity; well posed; Gevrey class; Fourier-Laplace transform; approximate energy estimates},
language = {eng},
number = {2},
pages = {291-312},
publisher = {Scuola normale superiore},
title = {Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time},
url = {http://eudml.org/doc/83908},
volume = {10},
year = {1983},
}
TY - JOUR
AU - Colombini, F.
AU - Jannelli, E.
AU - Spagnolo, S.
TI - Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1983
PB - Scuola normale superiore
VL - 10
IS - 2
SP - 291
EP - 312
LA - eng
KW - Cauchy problem; non-strict hyperbolicity; well posed; Gevrey class; Fourier-Laplace transform; approximate energy estimates
UR - http://eudml.org/doc/83908
ER -
References
top- [1] F. Colombini - E. De Giorgi - S. Spagnolo, Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Scuola Norm. Sup. Pisa, 6 (1979), pp. 511-559. Zbl0417.35049MR553796
- [2] F. Colombini - S. Spagnolo, An example of weakly hyperbolic Cauchy problem not well posed in C∞, Acta Math., 148 (1982), pp. 243-253. Zbl0517.35053
- [3] J. Dieudonné, Sur un théorème de Glaeser, J. Analyse Math., 23 (1970), pp. 85-88. Zbl0208.07503MR269783
- [4] G. Glaeser, Racine carrée d'une function differentiable, Ann. Inst. Fourier, 13 (1963), pp. 203-210. Zbl0128.27903MR163995
- [5] V. Ya. IVRII - V.M. Petkov, Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed, Uspehi Mat. Nauk, 29 (1974), pp. 3-70, English Transl. in Russian Math. Surveys. Zbl0312.35049MR427843
- [6] E. Jannelli, Weakly hyperbolic equations of second order with coefficients real analytic in space variables, Comm. in Partial Diff. Equations, 7 (1982), pp. 537-558. Zbl0505.35051MR653577
- [7] T. Nishitani, The Cauchy problem for weakly hyperbolic equations of second order, Comm. in Partial Diff. Equations, 5 (1980), pp. 1273-1296. Zbl0497.35053MR593968
- [8] O.A. Oleinik, On the Cauchy problem for weakly hyperbolic equations, Comm. Pure Appl. Math., 23 (1970), pp. 569-586. MR264227
Citations in EuDML Documents
top- Kunihiko Kajitani, Yasuo Yuzawa, The Cauchy problem for hyperbolic systems with Hölder continuous coefficients with respect to the time variable
- Tamotu Kinoshita, On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in and degenerate in
- Massimo Cicognani, The geometric optics for a class of hyperbolic second order operators with Hölder continuous coefficients with respect to time
- F. Colombini, S. Spagnolo, Some examples of hyperbolic equations without local solvability
- Enrico Jannelli, Weakly hyperbolic equations of second order well-posed in some Gevrey classes
- Nicola Orrù, On a weakly hyperbolic equation with a term of order zero
- Enrico Jannelli, Weakly hyperbolic equations of second order well-posed in some Gevrey classes
- Alessia Ascanelli, Well posedness under Levi conditions for a degenerate second order Cauchy problem
- Robert Dalmasso, Un résultat sur les fonctions de classe et application au problème de Cauchy
- Tatsuo Nishitani, Sergio Spagnolo, On pseudosymmetric systems with one space variable
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.