Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time

F. Colombini; E. Jannelli; S. Spagnolo

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1983)

  • Volume: 10, Issue: 2, page 291-312
  • ISSN: 0391-173X

How to cite

top

Colombini, F., Jannelli, E., and Spagnolo, S.. "Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 10.2 (1983): 291-312. <http://eudml.org/doc/83908>.

@article{Colombini1983,
author = {Colombini, F., Jannelli, E., Spagnolo, S.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Cauchy problem; non-strict hyperbolicity; well posed; Gevrey class; Fourier-Laplace transform; approximate energy estimates},
language = {eng},
number = {2},
pages = {291-312},
publisher = {Scuola normale superiore},
title = {Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time},
url = {http://eudml.org/doc/83908},
volume = {10},
year = {1983},
}

TY - JOUR
AU - Colombini, F.
AU - Jannelli, E.
AU - Spagnolo, S.
TI - Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1983
PB - Scuola normale superiore
VL - 10
IS - 2
SP - 291
EP - 312
LA - eng
KW - Cauchy problem; non-strict hyperbolicity; well posed; Gevrey class; Fourier-Laplace transform; approximate energy estimates
UR - http://eudml.org/doc/83908
ER -

References

top
  1. [1] F. Colombini - E. De Giorgi - S. Spagnolo, Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Scuola Norm. Sup. Pisa, 6 (1979), pp. 511-559. Zbl0417.35049MR553796
  2. [2] F. Colombini - S. Spagnolo, An example of weakly hyperbolic Cauchy problem not well posed in C∞, Acta Math., 148 (1982), pp. 243-253. Zbl0517.35053
  3. [3] J. Dieudonné, Sur un théorème de Glaeser, J. Analyse Math., 23 (1970), pp. 85-88. Zbl0208.07503MR269783
  4. [4] G. Glaeser, Racine carrée d'une function differentiable, Ann. Inst. Fourier, 13 (1963), pp. 203-210. Zbl0128.27903MR163995
  5. [5] V. Ya. IVRII - V.M. Petkov, Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed, Uspehi Mat. Nauk, 29 (1974), pp. 3-70, English Transl. in Russian Math. Surveys. Zbl0312.35049MR427843
  6. [6] E. Jannelli, Weakly hyperbolic equations of second order with coefficients real analytic in space variables, Comm. in Partial Diff. Equations, 7 (1982), pp. 537-558. Zbl0505.35051MR653577
  7. [7] T. Nishitani, The Cauchy problem for weakly hyperbolic equations of second order, Comm. in Partial Diff. Equations, 5 (1980), pp. 1273-1296. Zbl0497.35053MR593968
  8. [8] O.A. Oleinik, On the Cauchy problem for weakly hyperbolic equations, Comm. Pure Appl. Math., 23 (1970), pp. 569-586. MR264227

Citations in EuDML Documents

top
  1. Kunihiko Kajitani, Yasuo Yuzawa, The Cauchy problem for hyperbolic systems with Hölder continuous coefficients with respect to the time variable
  2. Tamotu Kinoshita, On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in t and degenerate in t = T
  3. Massimo Cicognani, The geometric optics for a class of hyperbolic second order operators with Hölder continuous coefficients with respect to time
  4. F. Colombini, S. Spagnolo, Some examples of hyperbolic equations without local solvability
  5. Enrico Jannelli, Weakly hyperbolic equations of second order well-posed in some Gevrey classes
  6. Nicola Orrù, On a weakly hyperbolic equation with a term of order zero
  7. Enrico Jannelli, Weakly hyperbolic equations of second order well-posed in some Gevrey classes
  8. Alessia Ascanelli, Well posedness under Levi conditions for a degenerate second order Cauchy problem
  9. Robert Dalmasso, Un résultat sur les fonctions de classe C 1 , α et application au problème de Cauchy
  10. Tatsuo Nishitani, Sergio Spagnolo, On pseudosymmetric systems with one space variable

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.